Skip to main content
Log in

Iminobenzophenone-thiophen hydrazide schiff base: a selective turn on sensor for paramagnetic Fe3+ ion and application in real sample analysis

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A highly selective turn-on sensor for paramagnetic Fe3+ ions based on (E)-N'-((2-aminophenyl)(phenyl)methylene)thiophene-2-carbohydrazide is successfully synthesized. The sensor BPTH is significantly selective and sensitive towards Fe3+ ions over other interfering metal ions especially Cu2+ and Co2+ ions with a lowest limit of recognition 1.48 × 10–7 M. The turn-on sensing mechanism involves enhanced charge transfer. Fe3+ ion forms strong binding with the ligand with a Ka value about 8.23 × 104 M−1 and a 1:1 stoichiometric ratio is confirmed by Job’s plot experiment. With Fe3+ ion, the yellow ligand BPTH change to a green fluorescent and reversible with 1 equivalent of EDTA. Practical application of sensor is demonstrated in real sample analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Sahoo, S. K., & Crisponi, G. (2019). Recent advances on iron (III) selective fluorescent probes with possible applications in bioimaging. Molecules, 24, 3267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, X., Xiong, D., Fu, P., Yun, M., Yang, Q., Jia, M.-M., & Dong, X. (2021). Metal–organic frameworks based on a benzimidazole flexible tetracarboxylic acid: Selective luminescence sensing Fe3+, magnetic behaviors, DFT calculations, and Hirshfeld surface analyses. Applied Organometallic Chemistry, 35, e6431.

    Article  CAS  Google Scholar 

  3. Lan, M., Zhao, S., Wei, X., Zhang, K., Zhang, Z., Wu, S., Wang, P., & Zhang, W. (2019). Pyrene-derivatized highly fluorescent carbon dots for the sensitive and selective determination of ferric ions and dopamine. Dyes and Pigments, 170, 107574.

    Article  CAS  Google Scholar 

  4. Dinga, Y., & Zhao, C. (2018). A highly selective fluorescent sensor for detection of trivalent metal ions based on a simple Schiff-base. Quimica Nova, 41, 623–627.

    Google Scholar 

  5. Li, B. Y., Li, R., Gao, J., Wang, W.-F., Xie, M.-J., Lu, J., Zheng, F.-K., & Guo, G.-C. (2022). Barium-based coordination polymer: A bi-functional fluorescent sensor for Fe3+ and nitroaromatic molecular detection. Inorganic Chemistry Communications, 137, 109227.

    Article  CAS  Google Scholar 

  6. Breuer, W., Ermers, M. J., Pootrakul, P., Abramov, A., Hershko, C., & Cabantchik, Z. I. (2001). Desferrioxamine-chelatable iron, a component of serum non–transferrin-bound iron, used for assessing chelation therapy. Blood, 97, 792–798.

    Article  CAS  PubMed  Google Scholar 

  7. Deng, H., Tian, C., Gao, Z., Chen, S.-W., Li, Y., Zhang, Q., Yu, R., & Wang, J. (2020). Highly luminescent N-doped carbon dots as a fluorescence detecting platform for Fe3+ in solution and living cells. The Analyst, 145, 4931–4936.

    Article  CAS  PubMed  Google Scholar 

  8. Kurz, T., Terman, A., Gustafsson, B., & Brunk, U. T. (2008). Lysosomes in iron metabolism, ageing and apoptosis. Histochemistry and Cell Biology, 129, 389–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Botella, H., Stadthagen, G., Lugo-Villarino, G., de Chastellier, C., & Neyrolles, O. (2012). Metallobiology of host-pathogen interactions: An intoxicating new insight. Trends in Microbiology, 20, 106–112.

    Article  CAS  PubMed  Google Scholar 

  10. Xu, H., Zhou, S., Fang, W., & Fan, Y. (2021). Synthesis of N-doped graphene quantum dots from bulk N-doped carbon nanofiber film for fluorescence detection of Fe3+ and ascorbic acid. Fullerenes, Nanotubes, and Carbon Nanostructures, 29, 218–226.

    Article  CAS  Google Scholar 

  11. Polatoğlu, B., & Bozkurt, E. (2021). Green synthesis of fluorescent carbon dots from Kumquat (Fortunella margarita) for detection of Fe3+ ions in aqueous solution. Research on Chemical Intermediates, 47, 1865–1881.

    Article  Google Scholar 

  12. Huang, Z., Gao, Y., Huang, Z., Chen, D., Sun, J., & Zhou, L. (2021). Sulfur quantum dots: A novel fluorescent probe for sensitive and selective detection of Fe3+ and phytic acid. Microchemical Journal, 170, 106656.

    Article  CAS  Google Scholar 

  13. Kang, S., Han, H., Lee, K., & Kim, K. M. (2022). Ultrasensitive detection of Fe3+ ions using functionalized grapheme. Quantum dots fabricated by a one-step pulsed laser ablation process. ACS Omega, 7, 2074–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren, Q., Ga, L., & Ai, J. (2019). Rapid synthesis of highly fluorescent nitrogen-doped graphene quantum dots for effective detection of ferric ions and as fluorescent ink. ACS Omega, 4, 15842–15848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kell, D. B. (2009). Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Medical Genomics. https://doi.org/10.1186/1755-8794-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. OuYang, H., Gao, Y., & Yuan, Y. (2013). A highly selective rhodamine-based optical-electrochemical multichannel chemosensor for Fe3+. Tetrahedron Letters, 54, 2964–2966.

    Article  CAS  Google Scholar 

  17. Fakih, S., Podinovskaia, M., Kong, X., Collins, H. L., Schaible, U. E., & Hider, R. C. (2008). Targeting the lysosome: Fluorescent iron(III) chelators to selectively monitor endosomal/lysosomal labile iron pools. Journal of Medicinal Chemistry, 51, 4539–4552.

    Article  CAS  PubMed  Google Scholar 

  18. Carter, K. P., Young, A. M., & Palmer, A. E. (2014). Fluorescent sensors for measuring metal ions in living systems. Chemical Reviews, 114, 4564–4601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sahoo, S. K., Sharma, D., Bera, R. K., Crisponi, G., & Callan, J. F. (2012). Iron(III) selective molecular and supramolecular fluorescent probes. Chemical Society Reviews, 41, 7195–7227.

    Article  CAS  PubMed  Google Scholar 

  20. Brandel, J., Humbert, N., Elhabiri, M., Schalk, I. J., Mislin, G. L., & Albrecht-Gary, A. M. (2012). Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(iii), copper(ii) and zinc(ii) complexes. Dalton Transactions, 41, 2820–2834.

    Article  CAS  PubMed  Google Scholar 

  21. Chereddy, N. R., Suman, K., Korrapati, P. S., Thennarasu, S., & Mandal, A. B. (2012). Design and synthesis of rhodamine based chemosensors for the detection of Fe3+ ions. Dyes and Pigments, 95, 606–613.

    Article  CAS  Google Scholar 

  22. Wang, X.-Q., Tang, J., Ma, X., Wu, D., & Yang, J. (2021). A water-stable zinc(II)–organic framework as an “on–off–on” fluorescent sensor for detection of Fe3+ and reduced glutathione. CrystEngComm, 23, 1243–1250.

    Article  CAS  Google Scholar 

  23. Sahoo, N. K., Jana, G. C., Aktara, M. N., Das, S., Nayim, S. K., Patra, A., Bhattacharjee, P., Bhadra, K., & Hossain, M. (2020). Carbon dots derived from lychee waste: Application for Fe3+ ions sensing in real water and multicolor cell imaging of skin melanoma cells. Mater. Sci. & Eng. C, 108, 110429.

    Article  CAS  Google Scholar 

  24. Xu, H., Dong, Y., Wu, Y., Ren, W., Zhao, T., Wang, S., & Gao, J. (2018). An -OH group functionalized MOF for ratiometric Fe3+ Sensing. Journal of Solid State Chemistry, 258, 441–446.

    Article  CAS  Google Scholar 

  25. Bar-Ness, E., Hadar, Y., Chen, Y., Shanzer, A., & Libman, J. (1992). NBD-DFO–a probe for Fe uptake from microbial siderophores. Plant Physiology, 99, 1329–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nesakumar, T., Edison, J. I., Atchudan, R., Shim, J.-J., Kalimuthu, S., Ahn, B.-C., & Lee, Y. R. (2016). Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. Journal of Photochemistry and Photobiology B: Biology., 158, 235–242.

    Article  Google Scholar 

  27. Abdullah, M., Abidin, Z. Z., Sobri, S., Rashid, S. A., Mahdi, M. A., & Ibrahim, N. A. (2020). Fluorescent recognition of Fe3+ in acidic environment by enhanced-quantum yield N-doped carbon dots: Optimization of variables using central composite design. Science and Reports, 10, 11710.

    Article  Google Scholar 

  28. Yang, Z., She, M., Yin, B., Cui, J., Zhang, Y., Sun, W., Li, J., & Shi, Z. (2012). Three rhodamine-based “off-on” chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells. Journal of Organic Chemistry, 77, 1143–1147.

    Article  CAS  PubMed  Google Scholar 

  29. Puthiyedath, T., & Bahulayan, D. (2018). A Click derived triazole-coumarin derivative as fluorescence on-off PET based sensor for Ca2+ and Fe3+ ions. Sensors and Actuators, B: Chemical Sensors and Materials, 272, 110–117.

    Article  CAS  Google Scholar 

  30. Sarih, N. M., Ciupa, A., Moss, S., Myers, P., Slater, A. G., Abdullah, Z., Tajuddin, H. A., & Maher, S. (2020). Furo[3,2-c]coumarin-derived Fe3+ selective fluorescence sensor: Synthesis, fluorescence study and application to water analysis. Science and Reports, 10, 7421.

    Article  CAS  Google Scholar 

  31. Nadgir, A., & Sidarai, A. H. (2021). Photophysical investigation of a benzimidazole derivative and its applications in selective detection of Fe3+, thermosensing and logic gates. Journal of Fluorescence, 31, 1503–1512.

    Article  CAS  PubMed  Google Scholar 

  32. Vanjare, B. D., Mahajan, P. G., Hong, S.-K., & Lee, K. H. (2018). Discriminating chemosensor for detection of Fe3+ in aqueous media by fluorescence quenching methodology. Bulletin of the Korean Chemical Society, 39, 631–637.

    Article  CAS  Google Scholar 

  33. Patil, N. B., Patil, U. D., Patil, P. A., Bothra, S., Sahoo, S. K., Sehlangia, S., Pradeep, C. P., Patil, A. A., & Patil, S. R. (2019). A Fused benzothiazolo-pyrimidine-based chemosensor for selective optical detection of Fe3+ and I ions in aqueous media. ChemistrySelect, 4, 4185–4189.

    Article  CAS  Google Scholar 

  34. Zhang, Y. M., Chen, X. P., Liang, G. Y., Zhong, K. P., Yao, H., Wei, T. B., & Lin, Q. (2018). A water-soluble fluorescent chemosensor based on Asp functionalized naphthalimide for successive detection Fe3+ and H2PO4-. Canadian Journal of Chemistry., 96, 1–8.

    Article  CAS  Google Scholar 

  35. Sayed, A., Othman, I. M. M., Hamam, M., Gomaa, H., Gadallah, M. I., Mostfa, M. A., Ali, H. R. H., Emran, M. Y., Abdel-Hakim, M., & Mahross, M. H. (2021). A novel fluorescent sensor for fast and highly selective turn-off detection of Fe3+ in water and pharmaceutical samples using synthesize d azopyrazole-benzenesulfonamide derivative. Journal of Molecular Structure, 1225, 129175.

    Article  CAS  Google Scholar 

  36. Cai, X., Ye, J., Zhou, Q., Yan, Z., & Li, K. (2020). A novel AIE “on-off-on” fluorescence sensor for highly selective and sensitive sequential detection of Fe3+ and HSO3 in foods. Microchemical Journal., 159, 105419.

    Article  CAS  Google Scholar 

  37. Zhang, B., Liu, H., Wu, F., Hao, G., Chen, Y., Tan, C., Tan, Y., & Jiang, Y. (2017). A dual-response quinoline-based fluorescent sensor for the detection of Copper (II) and Iron(III) ions in aqueous medium. Sensors and Actuators, B: Chemical Sensors and Materials, 243, 765–774.

    Article  CAS  Google Scholar 

  38. Zhu, X., Duan, Y., Li, P., Fan, H., Han, T., & Huang, X. (2019). A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron(III), iron(II), and copper(II) ions. Analytical Methods, 11, 642–647.

    Article  CAS  Google Scholar 

  39. Darole, R. S., DenzilBritto, C., Mukherjee, A., Gonnade, R. G., Sekar, K., & Senthilkumar, B. (2020). Anthrone-spirolactam and quinoline hybrid based sensor for selective fluorescent detection of Fe3+ ions. Applied Organometallic Chemistry, 34, e5867.

    Article  CAS  Google Scholar 

  40. Tamil Selvan, G., Varadaraju, C., Tamil Selvan, R., Enoch, I. V. M. V., & Selvakumar, P. M. (2018). On/Off fluorescent chemosensor for selective detection of divalent iron and copper ions: Molecular logic operation and protein binding. ACS Omega, 3, 7985–7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, B., Gu, X., Wang, M., Liu, X., & Xu, K. (2021). A novel “off-on-off” fluorescent probe for sensing of Fe3+ and F- successively in aqueous solution and its application in cells. Dyes and Pigments, 194, 109637.

    Article  CAS  Google Scholar 

  42. Wang, Y., Pak, Y. L., & Xu, Q. (2021). A selective fluorescent probe for ferric ion based on rhodamine 6G. Bulletin of the Korean Chemical Society, 42, 262–264.

    Article  CAS  Google Scholar 

  43. Wang, K. P., Zheng, W. J., Lei, Y., Zhang, S. J., Zhang, Q., Chen, S., & Hu, Z. Q. (2019). A thiophene-rhodamine dyad as fluorescence probe for ferric ion and its application in living cells imaging. Journal of Fluorescence, 208, 468–474.

    CAS  Google Scholar 

  44. Wang, P., Liu, X., Fu, J., Chang, Y., Yang, L., & Xu, K. (2018). Synthesis and fluorescence spectral studies of novel quinolylbenzothiazole-based sensors for selective detection of Fe3+ ion. Canadian Journal of Chemistry, 96, 1–7.

    Article  Google Scholar 

  45. Song, F., Yang, C., Liu, H., Gao, Z., Zhu, J., Bao, X., & Kan, C. (2019). Dual-binding pyridine and rhodamine B conjugate derivatives as fluorescent chemosensors for Ferric ion in aqueous media and living cells. The Analyst, 144, 3094–3102.

    Article  CAS  PubMed  Google Scholar 

  46. Kouser, R., Zehra, S., Khan, R. A., Alsalme, A., Arjmand, F., & Tabassum, S. (2021). “Turn-on” benzophenone based fluorescence and colorimetric sensor for the selective detection of Fe2+ in aqueous media: Validation of sensing mechanism by spectroscopic and computational studies. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 247, 119156.

    Article  CAS  PubMed  Google Scholar 

  47. Jadhav, A. G., Shinde, S. S., Lanke, S. K., & Sekar, N. (2017). Benzophenone based fluorophore for selective detection of Sn2+ ion: Experimental and theoretical study. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 174, 291–296.

    Article  CAS  PubMed  Google Scholar 

  48. Sinha, S., Koner, R. R., Kumar, S., Mathew, J., Monisha, P. V., Kazia, I., & Ghosh, S. (2013). Imine containing benzophenone scaffold as an efficient chemical device to detect selectively Al3+. RSC Advances, 3, 345–351.

    Article  CAS  Google Scholar 

  49. Nandhini, T., Kaleeswaran, P., & Pitchumani, K. (2016). A highly selective, sensitive and “turn-on” fluorescent sensor for the paramagnetic Fe3+ ion. Sensors and Actuators, B: Chemical Sensors and Materials, 230, 199–205.

    Article  CAS  Google Scholar 

  50. Jo, T. G., Bok, K. H., Han, J., Lim, M. H., & Kim, C. (2017). Colorimetric detection of Fe3+ and Fe2+ and sequential fluorescent detection of Al3+ and pyrophosphate by an imidazole-based chemosensor in a near-perfect aqueous solution. Dyes and Pigments, 139, 136–147.

    Article  CAS  Google Scholar 

  51. He, Y., Yin, J., & Wang, G. (2018). New selective “on-off” fluorescence chemosensor based on carbazole Schiff base for Fe3+ detection. Chem. of Heterocycl. Compd., 42, 146–152.

    Article  Google Scholar 

  52. Gong, X., Ding, X., Jiang, N., Zhong, T., & Wang, G. (2020). Benzothiazole-based fluorescence chemosensors for rapid recognition and “turn-off” fluorescence detection of Fe3+ ions in aqueous solution and in living cells. Microchemical Journal, 152, 104351.

    Article  CAS  Google Scholar 

  53. Hu, S., Zhang, S., Gao, C., Xu, C., & Gao, Q. (2013). A new selective fluorescent sensor for Fe3+ based on a pyrazoline derivative. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 113, 325–331.

    Article  CAS  PubMed  Google Scholar 

  54. Sasan, S., Chopra, T., Gupta, A., Tsering, D., Kapoor, K. K., & Parkesh, R. (2022). Fluorescence “Turn-Off” and colorimetric sensor for Fe2+, Fe3+, and Cu2+ ions based on a 2,5,7-triarylimidazopyridine scaffold. ACS Omega, 7, 11114–11125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rasin, P., Mathew, M. M., Manakkadan, V., Palakkeezhillam, V. N. V., & Sreekanth, A. (2022). A highly fluorescent pyrene-based sensor for selective detection of Fe3+ ion in aqueous medium: computational investigations. Journal of Fluorescence., 32, 1229–1238.

    Article  CAS  PubMed  Google Scholar 

  56. You, G. R., Park, G. J., Lee, S. A., Ryu, K. Y., & Kim, C. (2015). Chelate-type Schiff base acting as a colorimetric sensor for iron in aqueous solution. Sensors and Actuators, B: Chemical Sensors and Materials, 215, 188–195.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Dr. C. Denzil Britto is very thankful for University Post-Doctoral Fellowship (Order No. PU/CDC/UPDF/AD-3/003248/2021-1 & PU/AD3/UPDF Continuation Order/22F47567/2022) by Periyar University, Salem, 636011, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmuga Bharathi Kuppannan.

Ethics declarations

Conflict of interest

The authors of this manuscript declare that there is no conflict of interest in publishing our article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1192 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christopher Leslee, D.B., Madheswaran, B., Gunasekaran, J. et al. Iminobenzophenone-thiophen hydrazide schiff base: a selective turn on sensor for paramagnetic Fe3+ ion and application in real sample analysis. Photochem Photobiol Sci 22, 1933–1943 (2023). https://doi.org/10.1007/s43630-023-00422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00422-4

Keywords

Navigation