Skip to main content
Log in

Sustainable natural chlorogenic acid as a functional molecular sensor toward viscosity detection in liquids

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Liquids are perishable at ease during the long-term transportation and storage processes, non-invasive and in situ inspection method is urgent to be developed. In consideration of the important role of viscosity, one kind of sustainable natural product chlorogenic acid (CA) extracted from honeysuckle has been used as a versatile optical sensor for viscosity determination during the liquid spoilage process. The natural molecule was conducted by the O-diphenyl and carboxylic acid ester groups in coincidence, a typical twisted intramolecular charge transfer phenomenon was formed. This sensor features wide adaptability, high selectivity, good sensitivity, and excellent photo stability in various liquids. And CA displays a larger Stokes shift, high viscosity sensitive coefficient (0.62), and narrower energy band. The rotatable conjugate structure can be acted as the recognition site, and the bright fluorescent signal of CA is specifically activated when in the high viscous micro-environment. Inspired by this objective phenomenon, CA has been applied to detect the thickening efficiency of various food thickeners. More importantly, the viscosity fluctuations during the deterioration stage of liquids can be screened through non-invasive and in situ monitoring. We expected that more natural products can be developed as molecular tools for liquids safety investigation, and fluorescent analytical methods can be expanded toward interdisciplinary research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the results of this study are available if request.

References

  1. Wang, Z., Zhang, Y., Liang, Y., Li, M., Meng, Z., Yang, Y., Xu, X., & Wang, S. (2022). Novel bis-camphor-derived colorimetric and fluorescent probe for rapid and visual detection of cysteine and its versatile applications in food analysis and biological imaging. Journal of Agriculture and Food Chemistry, 70, 669–679. https://doi.org/10.1021/acs.jafc.1c06294

    Article  CAS  Google Scholar 

  2. Nsor-Atindana, J., Douglas Goff, H., Liu, W., Chen, M., & Zhong, F. (2018). The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. Carbohydrate Polymers, 200, 436–445. https://doi.org/10.1016/j.carbpol.2018.07.088

    Article  CAS  PubMed  Google Scholar 

  3. Arora, P., Sindhu, A., Dilbaghi, N., & Chaudhury, A. (2011). Biosensors as innovative tools for the detection of food borne pathogens. Biosensors & Bioelectronics, 28, 1–12. https://doi.org/10.1016/j.bios.2011.06.002

    Article  CAS  Google Scholar 

  4. Yang, X., Lu, X., Wang, J., Zhang, Z., Du, X., Zhang, J., & Wang, J. (2022). Near-infrared fluorescent probe with a large stokes shift for detection of hydrogen sulfide in food spoilage, living cells, and zebrafish. Journal of Agriculture and Food Chemistry, 70, 3047–3055. https://doi.org/10.1021/acs.jafc.2c00087

    Article  CAS  Google Scholar 

  5. Han, Y., Yang, W., Luo, X., He, X., Zhao, H., Tang, W., Yue, T., & Li, Z. (2022). Carbon dots based ratiometric fluorescent sensing platform for food safety. Critical Reviews in Food Science and Nutrition, 62, 244–260. https://doi.org/10.1080/10408398.2020.1814197

    Article  CAS  PubMed  Google Scholar 

  6. King, T., Cole, M., Farber, J. M., Eisenbrand, G., Zabaras, D., Fox, E. M., & Hill, J. P. (2017). Food safety for food security: relationship between global megatrends and developments in food safety. Trends in Food Science & Technology, 68, 160–175. https://doi.org/10.1016/j.tifs.2017.08.014

    Article  CAS  Google Scholar 

  7. Wibowo, S., Buvé, C., Hendrickx, M., Van Loey, A., & Grauwet, T. (2018). Integrated science-based approach to study quality changes of shelf-stable food products during storage: a proof of concept on orange and mango juices. Trends in Food Science & Technology, 73, 76–86. https://doi.org/10.1016/j.tifs.2018.01.006

    Article  CAS  Google Scholar 

  8. Kweku Amagloh, F., Mutukumira, A. N., Brough, L., Weber, J. L., Hardacre, A., & Coad, J. (2013). Carbohydrate composition, viscosity, solubility, and sensory acceptance of sweet potato- and maize-based complementary foods. Food & Nutrition Research, 57, 18717. https://doi.org/10.3402/fnr.v57i0.18717

    Article  CAS  Google Scholar 

  9. Lee, E., Kim, B., & Choi, S. (2020). Hand-held, automatic capillary viscometer for analysis of Newtonian and non-Newtonian fluids. Sensors Actuators A Physical, 313, 112176. https://doi.org/10.1016/j.sna.2020.112176

    Article  CAS  Google Scholar 

  10. Mäkelä, N., Brinck, O., & Sontag-Strohm, T. (2020). Viscosity of β-glucan from oat products at the intestinal phase of the gastrointestinal model. Food Hydrocolloids, 100, 105422. https://doi.org/10.1016/j.foodhyd.2019.105422

    Article  CAS  Google Scholar 

  11. Morreale, F., Garzón, R., & Rosell, C. M. (2018). Understanding the role of hydrocolloids viscosity and hydration in developing gluten-free bread. A study with hydroxypropylmethylcellulose. Food Hydrocolloids, 77, 629–635. https://doi.org/10.1016/j.foodhyd.2017.11.004

    Article  CAS  Google Scholar 

  12. Ma, C., Sun, W., Xu, L., Qian, Y., Dai, J., Zhong, G., Hou, Y., Liu, J., & Shen, B. (2020). A minireview of viscosity-sensitive fluorescent probes: design and biological applications. Journal of Materials Chemistry B, 8, 9642–9651. https://doi.org/10.1039/D0TB01146K

    Article  CAS  PubMed  Google Scholar 

  13. Yang, X., Zhang, D., Ye, Y., & Zhao, Y. (2022). Recent advances in multifunctional fluorescent probes for viscosity and analytes. Coordination Chemistry Reviews, 453, 214336. https://doi.org/10.1016/j.ccr.2021.214336

    Article  CAS  Google Scholar 

  14. Kubánková, M., López-Duarte, I., Bull, J. A., Vadukul, D. M., Serpell, L. C., Victor, M. S., Stride, E., & Kuimova, M. K. (2017). Probing supramolecular protein assembly using covalently attached fluorescent molecular rotors. Biomaterials, 129, 195–201. https://doi.org/10.1016/j.biomaterials.2017.06.009

    Article  CAS  Google Scholar 

  15. Caporaletti, F., Bittermann, M. R., Bonn, D., & Woutersen, S. (2022). Fluorescent molecular rotor probes nanosecond viscosity changes. The Journal of Chemical Physics, 156, 201101. https://doi.org/10.1063/5.0092248

    Article  CAS  PubMed  Google Scholar 

  16. Bittermann, M. R., Grzelka, M., Woutersen, S., Brouwer, A. M., & Bonn, D. (2021). Disentangling nano- and macroscopic viscosities of aqueous polymer solutions using a fluorescent molecular rotor. Journal of Physical Chemistry Letters, 12, 3182–3186. https://doi.org/10.1021/acs.jpclett.1c00512

    Article  CAS  PubMed  Google Scholar 

  17. Carugo, D., Aron, M., Sezgin, E., Serna, J. B. I., Kuimova, M. K., Eggeling, C., & Stride, E. (2017). Modulation of the molecular arrangement in artificial and biological membranes by phospholipid-shelled microbubbles. Biomaterials, 113, 105–117. https://doi.org/10.1016/j.biomaterials.2016.10.034

    Article  CAS  PubMed  Google Scholar 

  18. Ye, S., Zhang, H., Fei, J., Wolstenholme, C. H., & Zhang, X. (2021). A general strategy to control viscosity sensitivity of molecular rotor-based fluorophores. Angewandte Chemie International Edition, 60, 1339–1346. https://doi.org/10.1002/anie.202011108

    Article  CAS  PubMed  Google Scholar 

  19. Tan, H., Qiu, Y., Sun, H., Yan, J., & Zhang, L. (2019). A lysosome-targeting dual-functional fluorescent probe for imaging intracellular viscosity and beta-amyloid. Chemical Communications, 55, 2688–2691. https://doi.org/10.1039/C9CC00113A

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Molina, J., Zhang, X., Borghesan, M., Mendonça da Silva, J., Awan, M., Fuller, B., Gavara, N., & Selden, C. (2018). Extracellular fluid viscosity enhances liver cancer cell mechanosensing and migration. Biomaterials, 177, 113–124. https://doi.org/10.1016/j.biomaterials.2018.05.058

    Article  CAS  PubMed  Google Scholar 

  21. Yang, Z., Cao, J., He, Y., Yang, J. H., Kim, T., Peng, X., & Kim, J. S. (2014). Macro-/micro-environment-sensitive chemosensing and biological imaging. Chemical Society Reviews, 43, 4563–4601. https://doi.org/10.1039/C4CS00051J

    Article  CAS  PubMed  Google Scholar 

  22. Fan, L., Pan, Y., Li, W., Xu, Y., Duan, Y., Li, R., Lv, Y., Chen, H., & Yuan, Z. (2021). A near-infrared fluorescent probe with large Stokes shift for visualizing and monitoring mitochondrial viscosity in live cells and inflammatory tissues. Analytica Chimica Acta, 1149, 338203. https://doi.org/10.1016/j.aca.2021.338203

    Article  CAS  PubMed  Google Scholar 

  23. Elkordy, A. A., Haj-Ahmad, R. R., Awaad, A. S., & Zaki, R. M. (2021). An overview on natural product drug formulations from conventional medicines to nanomedicines: past, present and future. Journal of Drug Delivery Science and Technology, 63, 102459. https://doi.org/10.1016/j.jddst.2021.102459

    Article  CAS  Google Scholar 

  24. Yao, C., Zhang, J., Li, J., Wei, W., Wu, S., & Guo, D. (2021). Traditional Chinese medicine (TCM) as a source of new anticancer drugs. Natural Products Reports, 38, 1618–1633. https://doi.org/10.1039/D0NP00057D

    Article  CAS  Google Scholar 

  25. Zhang, Y., Gao, M., Gao, R., Xue, L., Gao, F., Shen, L., & Zheng, X. (2021). Effects of process parameters on texture quality of blue honeysuckle berry snack under continuous microwave puffing conditions. Journal of Food Processing and Preservation, 45, 16047. https://doi.org/10.1111/jfpp.16047

    Article  CAS  Google Scholar 

  26. Lee, H. J., Lee, D.-Y., Chun, Y.-S., Kim, J.-K., Lee, J.-O., Ku, S.-K., & Shim, S.-M. (2022). Effects of blue honeysuckle containing anthocyanin on anti-diabetic hypoglycemia and hyperlipidemia in ob/ob mice. Journal of Functional Foods, 89, 104959. https://doi.org/10.1016/j.jff.2022.104959

    Article  CAS  Google Scholar 

  27. Wianowska, D., & Gil, M. (2019). Recent advances in extraction and analysis procedures of natural chlorogenic acids. Phytichemistry Reviews, 18, 273–302. https://doi.org/10.1007/s11101-018-9592-y

    Article  CAS  Google Scholar 

  28. Filo, E. G. A., Sousa, V. M., Rodrigues, S., Brito, E. S., & Fernandes, F. A. N. (2020). Green ultrasound-assisted extraction of chlorogenic acids from sweet potato peels and sonochemical hydrolysis of caffeoylquinic acids derivatives. Ultrasonics Sonochemistry, 63, 104911. https://doi.org/10.1016/j.ultsonch.2019.104911

    Article  CAS  Google Scholar 

  29. Yu, H. C., Huang, S. M., Lin, W. M., Kuo, C. H., & Shieh, C. J. (2019). Comparison of artificial neural networks and response surface methodology towards an efficient ultrasound-assisted extraction of chlorogenic acid from Lonicera japonica. Molecules, 24, 2304. https://doi.org/10.3390/molecules24122304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steinmark, I. E., Chung, P.-H., Ziolek, R. M., Cornell, B., Smith, P., Levitt, J. A., Tregidgo, C., Molteni, C., Yahioglu, G., Lorenz, C. D., & Suhling, K. (2020). Time-resolved fluorescence anisotropy of a molecular rotor resolves microscopic viscosity parameters in complex environments. Small (Weinheim an der Bergstrasse, Germany), 16, 1907139. https://doi.org/10.1002/smll.201907139

    Article  CAS  Google Scholar 

  31. Li, D., Tian, X., Wang, A., Guan, L., Zheng, J., Li, F., Li, S., Zhou, H., Wu, J., & Tian, Y. (2016). Nucleic acid-selective light-up fluorescent biosensors for ratiometric two-photon imaging of the viscosity of live cells and tissues. Chemical Science, 7, 2257–2263. https://doi.org/10.1039/C5SC03956H

    Article  CAS  PubMed  Google Scholar 

  32. Guo, R., Yin, J., Ma, Y., Wang, Q., & Lin, W. (2018). A novel mitochondria-targeted rhodamine analogue for the detection of viscosity changes in living cells, zebra fish and living mice. J Mater Chem B, 6, 2894–2900. https://doi.org/10.1039/C8TB00298C

    Article  CAS  PubMed  Google Scholar 

  33. Vyšniauskas, A., Quarshi, M., Gallop, N., Balaz, M., Anderson, H. L., & Kuimova, M. K. (2015). Unravelling the effect of temperature on viscosity-sensitive fluorescent molecular rotors. Chemical Science, 6, 5773–5778. https://doi.org/10.1039/C5SC02248G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jee, A. Y., Bae, E., & Lee, M. (2010). Internal motion of an electronically excited molecule in viscoelastic media. Journal of Chemical Physics, 133, 014507. https://doi.org/10.1063/1.3454724

    Article  CAS  PubMed  Google Scholar 

  35. Moret-Tatay, A., Rodríguez-García, J., Martí-Bonmatí, E., Hernando, I., & Hernández, M. J. (2015). Commercial thickeners used by patients with dysphagia: rheological and structural behaviour in different food matrices. Food Hydrocolloids, 51, 318–326. https://doi.org/10.1016/j.foodhyd.2015.05.019

    Article  CAS  Google Scholar 

  36. Deng, Y., & Feng, G. (2020). Visualization of ONOO and viscosity in drug-induced hepatotoxicity with different fluorescence signals by a sensitive fluorescent probe. Analytical Chemistry, 92, 14667–14675. https://doi.org/10.1021/acs.analchem.0c03199

    Article  CAS  PubMed  Google Scholar 

  37. Xu, L., Peng, X., Ma, G., Zeng, M., Wu, K., & Liu, L. (2022). Naphthalene anhydride triphenylamine as a viscosity-sensitive molecular rotor for liquid safety inspection. New Journal of Chemistry, 46, 3078–3082. https://doi.org/10.1039/D1NJ04953D

    Article  CAS  Google Scholar 

  38. Li, J., Yang, C., Peng, X., Chen, Y., Qi, Q., Luo, X., Lai, W.-Y., & Huang, W. (2018). Stimuli-responsive solid-state emission from o-carborane–tetraphenylethene dyads induced by twisted intramolecular charge transfer in the crystalline state. Journals of Materials Chemistry C, 6, 19–28. https://doi.org/10.1039/C7TC03780E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Jiangxi Province (20212BAB214031), the Innovation and Entrepreneurship Training Program for College Students of Jiangxi Province (202210419011), Science and Technology Program of Jiangxi Provincial Education Bureau (GJJ211032, GJJ2209316), Jiangxi Post-doctoral Scientific Research Program (2021KY57), Innovation and Entrepreneurship Training Program for College Students of Jinggangshan University (JDX2022150), Doctoral Research Foundation of Jinggangshan University (JZB2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfeng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper. The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53764 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Xu, W., Tian, Z. et al. Sustainable natural chlorogenic acid as a functional molecular sensor toward viscosity detection in liquids. Photochem Photobiol Sci 22, 1245–1255 (2023). https://doi.org/10.1007/s43630-023-00365-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00365-w

Keywords

Navigation