Skip to main content
Log in

Light conditions affect the growth, chemical composition, antioxidant and antimicrobial activities of the white-rot fungus Lentinus crinitus mycelial biomass

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The mycelial biomass of basidiomycetes is a promising source of compounds and represents an alternative for industrial and biotechnological applications. Fungi use light as information and hold photoresponse mechanisms, in which sensors respond to light wavelengths and regulate various biological processes. Therefore, this study aimed to investigate the effects of blue, green, and red lights on the growth, chemical composition, and antioxidant and antimicrobial activity of Lentinus crinitus mycelial biomass. The chemical composition of the mycelial biomass was determined by chromatographic methods, antioxidant activity was analyzed by in vitro assays, and antimicrobial activity was investigated by the microdilution assay. The highest mycelial biomass yield was observed under blue-light cultivation. Many primordia arose under blue or green light, whereas the stroma was formed under red light. The presence of light altered the primary fungal metabolism, increasing the carbohydrate, tocopherol, fatty acid, and soluble sugar contents, mostly mannitol, and reducing the protein and organic acid concentrations. Cultivation under red light increased the phenol concentration. In contrast, cultivation under blue and green lights decreased phenol concentration. Benzoic and gallic acids were the main phenolic acids in the hydroalcoholic extracts, and the latter acids increased in all cultures under light, especially red light. Mycelial biomass cultivated under red light showed the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The ferric reducing antioxidant power (FRAP) method showed that all light wavelengths increased the antioxidant activity of mycelial biomass, with the highest value under red light. Moreover, the β-carotene/linoleic acid co-oxidation (BCLA) assay demonstrated that the antioxidant activity was affected by light cultivation. Mycelial biomass grown under all conditions exhibited antibacterial and antifungal activities. Thus, mycelial biomass cultivation of L. crinitus under light conditions may be a promising strategy for controlling the mycelial chemical composition and biomass yield.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Shaffique, S., Kang, S. M., Kim, A. Y., Imran, M., Aaqil Khan, M., & Lee, I. J. (2021). Current knowledge of medicinal mushrooms related to antioxidant properties. Sustainability, 13(14), 7948. https://doi.org/10.3390/su13147948

    Article  CAS  Google Scholar 

  2. Bertéli, M. B. D., Barros, L., Reis, F. S., Ferreira, I. C., Glamočlija, J., Soković, M., Valle, J. S., Linde, G. A., Ruiz, S. P., & Colauto, N. B. (2021). Antimicrobial activity, chemical composition and cytotoxicity of Lentinus crinitus basidiocarp. Food & Function, 12(15), 6780–6792. https://doi.org/10.1039/d1fo00656h

    Article  CAS  Google Scholar 

  3. Bertéli, M. B. D., Lopes, A. D., Colla, I. M., Linde, G. A., & Colauto, N. B. (2016). Agaricus subrufescens: Substratum nitrogen concentration and mycelial extraction method on antitumor activity. Anais da Academia Brasileira de Ciências, 88, 2239–2246. https://doi.org/10.1590/0001-3765201620160161

    Article  CAS  PubMed  Google Scholar 

  4. Mourão, F., Umeo, S. H., Bertéli, M. B. D., Lourenço, E. L., Junior, A. G., Takemura, O. S., Linde, G. A., & Colauto, N. B. (2011). Anti-inflammatory activity of Agaricus blazei in different basidiocarp maturation phases. Food and Agricultural Immunology, 22(4), 325–3333. https://doi.org/10.1080/09540105.2011.581272

    Article  Google Scholar 

  5. Song, X., Gaascht, F., Schmidt-Dannert, C., & Salomon, C. E. (2020). Discovery of antifungal and biofilm preventative compounds from mycelial cultures of a unique North American Hericium sp. fungus. Molecules, 25(4), 963. https://doi.org/10.3390/molecules25040963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bertéli, M. B. D., Oliveira Filho, O., Freitas, J. D., Bortolucci, W. C., Silva, G. R., Gazim, Z. C., Lívero, F. A. R., Lovato, E. C. W., Valle, J. S., Linde, G. A., Barros, L., Reis, F. S., Ferreira, I. C. F. R., Paccola-Meirelles, L. D., & Colauto, N. B. (2021). Lentinus crinitus basidiocarp stipe and pileus: Chemical composition, cytotoxicity and antioxidant activity. European Food Research and Technology, 247(6), 1355–1366. https://doi.org/10.1007/s00217-021-03713-1

    Article  CAS  Google Scholar 

  7. Ogidi, C. O., Ubaru, A. M., Ladi-Lawal, T., Thonda, O. A., Aladejana, O. M., & Malomo, O. (2020). Bioactivity assessment of exopolysaccharides produced by Pleurotus pulmonarius in submerged culture with different agro-waste residues. Heliyon, 6(12), e05685. https://doi.org/10.1016/j.heliyon.2020.e05685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu, H., Tian, L., Zhang, L., Bi, J., Song, Q., Yang, H., & Qiao, J. (2018). Preparation, characterization and antioxidant activity of polysaccharide from spent Lentinus edodes substrate. International Journal of Biological Macromolecules, 112, 976–984. https://doi.org/10.1016/j.ijbiomac.2018.01.196

    Article  CAS  PubMed  Google Scholar 

  9. Lavelli, V., Proserpio, C., Gallotti, F., Laureati, M., & Pagliarini, E. (2018). Circular reuse of bio-resources: The role of Pleurotus spp. in the development of functional foods. Food & Function, 9(3), 1353–1372. https://doi.org/10.1039/c7fo01747b

    Article  CAS  Google Scholar 

  10. Taofiq, O., González-Paramás, A. M., Martins, A., Barreiro, M. F., & Ferreira, I. C. (2016). Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Industrial Crops and Products, 90, 38–48. https://doi.org/10.1016/j.indcrop.2016.06.012

    Article  CAS  Google Scholar 

  11. Martinez-Medina, G. A., Chávez-González, M. L., Verma, D. K., Prado-Barragán, L. A., Martínez-Hernández, J. L., Flores-Gallegos, A. C., Thakur, M., Srivastav, P. P., & Aguilara, C. N. (2021). Bio-functional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. Journal of Functional Foods, 77, 104326. https://doi.org/10.1016/j.jff.2020.104326

    Article  CAS  Google Scholar 

  12. Wu, Y., Choi, M. H., Li, J., Yang, H., & Shin, H. J. (2016). Mushroom cosmetics: The present and future. Cosmetics, 3(3), 22. https://doi.org/10.3390/cosmetics3030022

    Article  CAS  Google Scholar 

  13. Corrochano, L. M. (2019). Light in the fungal world: From photoreception to gene transcription and beyond. Annual Review of Genetics, 53, 149–170. https://doi.org/10.1146/annurev-genet-120417-031415

    Article  CAS  PubMed  Google Scholar 

  14. Dias, L. P., Pedrini, N., Braga, G. U. L., Ferreira, P. C., Pupin, B., Araújo, C. A. S., Corrochano, L. M., & Rangel, D. E. N. (2020). Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Fungal Biology, 124, 263–272. https://doi.org/10.1016/j.funbio.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  15. Dias, L. P., Pupin, B., Roberts, D. W., & Rangel, D. E. N. (2022). Low- or high-white light irradiance induces similar conidial stress tolerance in Metarhizium robertsii. Archives of Microbiology, 204, 83. https://doi.org/10.1007/s00203-021-02730-8

    Article  CAS  Google Scholar 

  16. Dias, L. P., Souza, R. K. F., Pupin, B., & Rangel, D. E. N. (2021). Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. Fungal Biology, 125, 891–904. https://doi.org/10.1016/j.funbio.2021.06.003

    Article  CAS  PubMed  Google Scholar 

  17. Yu, Z., & Fischer, R. (2019). Light sensing and responses in fungi. Nature Reviews Microbiology, 17(1), 25–36. https://doi.org/10.1038/s41579-018-0109-x

    Article  CAS  PubMed  Google Scholar 

  18. Wu, B., Xu, Z., Knudson, A., Carlson, A., Chen, N., Kovaka, S., LaButti, K., Lipzen, A., Pennachio, C., Riley, R., Schakwitz, W., Umezawa, K., Ohm, R. A., Grigoriev, I. V., Nagy, L. G., Gibbons, J., & Hibbett, D. (2018). Genomics and development of Lentinus tigrinus: A white-rot wood-decaying mushroom with dimorphic fruiting bodies. Genome Biology and Evolution, 10(12), 3250–3261. https://doi.org/10.1093/gbe/evy246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Araújo, N. L., Avelino, K. V., Halabura, M. I. W., Marim, R. A., Kassem, A. S. S., Linde, G. A., Colauto, N. B., & Valle, J. S. (2021). Use of green light to improve the production of lignocellulose-decay enzymes by Pleurotus spp. in liquid cultivation. Enzyme and Microbial Technology, 149, 109860. https://doi.org/10.1016/j.enzmictec.2021.109860

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H., Tong, X., Tian, F., Jia, C., Li, C., & Li, Y. (2020). Transcriptomic profiling sheds light on the blue-light and red-light response of oyster mushroom (Pleurotus ostreatus). AMB Express, 10(1), 1–10. https://doi.org/10.1186/s13568-020-0951-x

    Article  CAS  Google Scholar 

  21. Du, F., Zou, Y., Hu, Q., Zhang, H., & Ye, D. (2020). Comparative transcriptomic analysis reveals molecular processes involved in pileus morphogenesis in Pleurotus eryngii under different light conditions. Genomics, 112(2), 1707–1715. https://doi.org/10.1016/j.ygeno.2019.09.014

    Article  CAS  PubMed  Google Scholar 

  22. López-Legarda, X., Arboleda-Echavarría, C., Parra-Saldivar, R., Rostro-Alanis, M., Alzate, J. F., Villa-Pulgarin, J. A., & Segura-Sánchez, F. (2020). Biotechnological production, characterization and in vitro antitumor activity of polysaccharides from a native strain of Lentinus crinitus. International Journal of Biological Macromolecules, 164, 3133–3144. https://doi.org/10.1016/j.ijbiomac.2020.08.191

    Article  CAS  PubMed  Google Scholar 

  23. Meniqueti, A. B., Ruiz, S. P., Faria, M. G. I., Valle, J. S., Gonçalves, A. C., Jr., Dragunski, D. C., Colauto, N. B., & Linde, G. A. (2021). Iron bioaccumulation in Lentinus crinitus mycelia cultivated in agroindustrial byproducts. Waste and Biomass Valorization, 12(9), 4965–4974. https://doi.org/10.1007/s12649-021-01353-w

    Article  CAS  Google Scholar 

  24. Faria, M. G. I., Avelino, K. V., Valle, J. S., Silva, G. J., Gonçalves, A. C., Jr., Dragunski, D. C., Colauto, N. B., & Linde, G. A. (2019). Lithium bioaccumulation in Lentinus crinitus mycelial biomass as a potential functional food. Chemosphere, 235, 538–542. https://doi.org/10.1016/j.chemosphere.2019.06.218

    Article  CAS  PubMed  Google Scholar 

  25. Tavares, M. F., Avelino, K. V., Araújo, N. L., Marim, R. A., Linde, G. A., Colauto, N. B., & Valle, J. S. (2020). Decolorization of azo and anthraquinone dyes by crude laccase produced by Lentinus crinitus in solid state cultivation. Brazilian Journal of Microbiology, 51(1), 99–106. https://doi.org/10.1007/s42770-019-00189-w

    Article  CAS  PubMed  Google Scholar 

  26. Silva, G. T., & Gibertoni, T. B. (2006). Aphyllophorales (Basidiomycota) em áreas urbanas da região metropolitana do Recife, PE, Brasil. Hoehnea, 33(4), 533–543.

    Google Scholar 

  27. Vargas-Isla, R., Ishikawa, N. K., & Py-Daniel, V. (2013). Contribuições etnomicológicas dos povos indígenas da Amazônia. Biota Amazônia, 3(1), 58–65. https://doi.org/10.18561/2179-5746/biotaamazonia.v3n1p58-65

    Article  Google Scholar 

  28. Marim, R. A., Avelino, K. V., Halabura, M. I. W., Araujo, N. L., Santana, T. T., Linde, G. A., Colauto, N. B., & Valle, J. S. (2020). Lentinus crinitus response to blue light on carbohydrate-active enzymes. Bioscience Journal, 36(3), 924–931. https://doi.org/10.14393/BJ-v36n3a2020-49986

    Article  Google Scholar 

  29. Zaghi Junior, L. L., Bertéli, M. B. D., Freitas, J. D. S., Oliveira Filho, O. B. Q., Lopes, A. D., Ruiz, S. P., Valle, J. S., Linde, G. A., & Colauto, N. B. (2020). Five-year cryopreservation at −80 °C of edible and medicinal basidiomycetes by wheat grain technique. Journal of Microbiological Methods, 176, 106030. https://doi.org/10.1016/j.mimet.2020.106030

    Article  CAS  PubMed  Google Scholar 

  30. AOAC-Association of Official Analytical Chemists. (2016). Official methods of analysis of AOAC international. AOAC International.

    Google Scholar 

  31. Ćirić, A., Kruljević, I., Stojković, D., Fernandes, Â., Barros, L., Calhelha, R. C., Ferreira, I. C. F. R., Soković, M., & Glamočlija, J. (2019). Comparative investigation on edible mushrooms Macrolepiota mastoidea, M. rhacodes and M. procera: functional foods with diverse biological activities. Food & Function, 10(12), 7678–7686. https://doi.org/10.1039/c9fo01900f

    Article  CAS  Google Scholar 

  32. Barros, L., Pereira, C., & Ferreira, I. C. F. R. (2013). Optimized analysis of organic acids in edible mushrooms from Portugal by ultra fast liquid chromatography and photodiode array detection. Food Analytical Methods, 6(1), 309–316. https://doi.org/10.1007/s12161-012-9443-1

    Article  Google Scholar 

  33. Spréa, R. M., Fernandes, Â., Calhelha, R. C., Pereira, C., Pires, T. C. S. P., Alves, M. J., Canan, C., Barros, L., Amaral, J. S., & Ferreira, I. C. F. R. (2020). Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food & Function, 11, 1292–1303. https://doi.org/10.1039/C9FO02841B

    Article  Google Scholar 

  34. Saltarelli, R., Ceccaroli, P., Iotti, M., Zambonelli, A., Buffalini, M., Casadei, L., Vallorani, L., & Stocchi, V. (2009). Biochemical characterisation and antioxidant activity of mycelium of Ganoderma lucidum from Central Italy. Food Chemistry, 116(1), 143–151. https://doi.org/10.1016/j.foodchem.2009.02.023

    Article  CAS  Google Scholar 

  35. Palacios, I., Lozano, M., Moro, C., D’arrigo, M., Rostagno, M. A., Martínez, J. A., & Villares, A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128(3), 674–678. https://doi.org/10.1016/j.foodchem.2011.03.085

    Article  CAS  Google Scholar 

  36. Fernandes, A., Barros, L., Antonio, A. L., Barreira, J. C. M., Oliveira, M. B. P. P., Martins, A., & Ferreira, I. C. F. R. (2014). Using gamma irradiation to attenuate the effects caused by drying or freezing in Macrolepiota procera organic acids and phenolic compounds. Food and Bioprocess Technology, 7, 3012–3021. https://doi.org/10.1007/s11947-013-1248-8

    Article  CAS  Google Scholar 

  37. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In L. Packer (Ed.), Methods in enzymology (1st ed., pp. 152–178). Academic Press. https://doi.org/10.1016/S0076-6879(99)99017-1

    Chapter  Google Scholar 

  38. Rufino, M. D. S., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. D. G., Pérez-Jimenez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Comunicado Técnico, Embrapa, 127, 1–4.

    Google Scholar 

  39. Rufino, M. D. S., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. D. G., Pérez-Jimenez, J., & Saura-Calixto, F. D. (2006). Metodologia científica: Determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Comunicado Técnico, Embrapa, 125, 1–4.

    Google Scholar 

  40. Rufino, M. D. S., Alves, R. E., Brito, E. S., Mancini Filho, J., & Moreira, A. V. B. (2006). Metodologia científica: Determinação da atividade antioxidante total em frutas no sistema beta-caroteno/ácido linoleico. Comunicado Técnico, Embrapa, 126, 1–4.

    Google Scholar 

  41. Kostić, M., Smiljković, M., Petrović, J., Glamočlija, J., Barros, L., Ferreira, I. C. F. R., Ćirić, A., & Soković, M. (2017). Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom Armillaria mellea (Vahl: Fr.) Kummer. Food & Function, 8(9), 3239–3249. https://doi.org/10.1039/c7fo00887b

    Article  CAS  Google Scholar 

  42. Soković, M., Glamočlija, J., Marin, P. D., Brkić, D., & van Griensven, L. J. L. D. (2010). Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 15, 7532–7546. https://doi.org/10.3390/molecules15117532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tisch, D., & Schmoll, M. (2010). Light regulation of metabolic pathways in fungi. Applied Microbiology and Biotechnology, 85, 1259–1277. https://doi.org/10.1007/s00253-009-2320-1

    Article  CAS  PubMed  Google Scholar 

  44. Bayram, Ö., Feussner, K., Dumkow, M., Herrfurth, C., Feussner, I., & Braus, G. H. (2016). Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genetics and Biology, 87, 30–53. https://doi.org/10.1016/j.fgb.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  45. Lavín, J. L., Ramírez, L., Pisabarro, A. G., & Oguiza, J. A. (2015). Genomewide analysis of phytochrome proteins in the phylum Basidiomycota. Journal of Basic Microbiology, 55(9), 1141–1147. https://doi.org/10.1002/jobm.201500078

    Article  CAS  PubMed  Google Scholar 

  46. Dasgupta, A., Fuller, K. K., Dunlap, J. C., & Loros, J. J. (2016). Seeing the world differently: Variability in the photosensory mechanisms of two model fungi. Environmental Microbiology, 18(1), 5–20. https://doi.org/10.1111/1462-2920.13055

    Article  PubMed  Google Scholar 

  47. Wang, Z., Wang, J., Li, N., Li, J., Trail, F., Dunlap, J. C., & Townsend, J. P. (2018). Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Molecular Ecology, 27(1), 216–232. https://doi.org/10.1111/mec.14425

    Article  CAS  PubMed  Google Scholar 

  48. Arjona, D., Aragón, C., Aguilera, J. A., Ramírez, L., & Pisabarro, A. G. (2009). Reproducible and controllable light induction of in vitro fruiting of the white-rot basidiomycete Pleurotus ostreatus. Mycological Research, 113(5), 552–558. https://doi.org/10.1016/j.mycres.2008.12.006

    Article  PubMed  Google Scholar 

  49. Damaso, E. J., Jr., Dulay, R. M. R., Kalaw, S. P., & Reyes, R. G. (2018). Effects of color light emitting diode (led) on the mycelial growth, fruiting body production, and antioxidant activity of Lentinus tigrinus. International Journal of Science and Technology, 3(2), 9–16. https://doi.org/10.22137/ijst.2018.v3n2.02

    Article  Google Scholar 

  50. Corrochano, L. M. (2007). Fungal photoreceptors: Sensory molecules for fungal development and behavior. Photochemical & Photobiological Sciences, 6(7), 725–736. https://doi.org/10.1039/B702155K

    Article  CAS  Google Scholar 

  51. Kamada, T., Sano, H., Nakazawa, T., & Nakahori, K. (2010). Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genetics and Biology, 47(11), 917–921. https://doi.org/10.1016/j.fgb.2010.05.003

    Article  PubMed  Google Scholar 

  52. Yi, Z. L., Huang, W. F., Ren, Y., Onac, E., Zhou, G. F., Peng, S., Wang, X. J., & Li, H. H. (2014). LED lights increase bioactive substances at low energy costs in culturing fruiting bodies of Cordyceps militaris. Scientia Horticulturae, 175, 139–143. https://doi.org/10.1016/j.scienta.2014.06

    Article  CAS  Google Scholar 

  53. Xie, C., Gong, W., Zhu, Z., Yan, L., Hu, Z., & Peng, Y. (2018). Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage. Genomics, 110(3), 201–209. https://doi.org/10.1016/j.ygeno.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  54. Wu, J. Y., Chen, H. B., Chen, M. J., Kan, S. C., Shieh, C. J., & Liu, Y. C. (2013). Quantitative analysis of LED effects on edible mushroom Pleurotus eryngii in solid and submerged cultures. Journal of Chemical Technology & Biotechnology, 88(10), 1841–1846. https://doi.org/10.1002/jctb.4038

    Article  CAS  Google Scholar 

  55. Barros, L., Cruz, T., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R. (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 46(8), 2742–2747. https://doi.org/10.1016/j.fct.2008.04.030

    Article  CAS  PubMed  Google Scholar 

  56. Câmara, J. S., Albuquerque, B. R., Aguiar, J., Corrêa, R. C., Gonçalves, J. L., Granato, D., Pereira, J. A. M., Barros, L., & Ferreira, I. C. F. R. (2020). Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods, 10(1), 37. https://doi.org/10.3390/foods10010037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dávila, G. L. R., Murillo, A. W., Zambrano, F. C. J., Suárez, M. H., & Méndez, A. J. J. (2020). Evaluation of nutritional values of wild mushrooms and spent substrate of Lentinus crinitus (L.) Fr. Heliyon, 6(3), e03502. https://doi.org/10.1016/j.heliyon.2020.e03502

    Article  CAS  Google Scholar 

  58. Pawlik, A., Mazur, A., Wielbo, J., Koper, P., Zebracki, K., Kubik-Komar, A., & Janusz, G. (2019). RNA sequencing reveals differential gene expression of Cerrena unicolor in response to variable lighting conditions. International Journal of Molecular Sciences, 20(2), 290. https://doi.org/10.3390/ijms20020290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Corrêa, R. C. G., Souza, A. H. P., Calhelha, R. C., Barros, L., Glamočlija, J., Soković, M., Peralta, R. M., Bracht, A., & Ferreira, I. C. F. R. (2015). Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food & Function, 6(7), 2155–2164. https://doi.org/10.1039/c5fo00465a

    Article  Google Scholar 

  60. Meena, M., Prasad, V., Zehra, A., Gupta, V. K., & Upadhyay, R. S. (2015). Mannitol metabolism during pathogenic fungal–host interactions under stressed conditions. Frontiers in Microbiology, 6, 1019. https://doi.org/10.3389/fmicb.2015.01019

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stoop, J. M., & Mooibroek, H. (1998). Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom, Agaricus bisporus, and its expression in response to NaCl stress. Applied and Environmental Microbiology, 64(12), 4689–4696. https://doi.org/10.1128/AEM.64.12.4689-4696.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao, X., Yu, C., Zhao, Y., Liu, S., Wang, H., Wang, C., Guo, L., & Chen, M. (2019). Changes in mannitol content, regulation of genes involved in mannitol metabolism, and the protective effect of mannitol on Volvariella volvacea at low temperature. BioMed Research International. https://doi.org/10.1155/2019/1493721

    Article  PubMed  PubMed Central  Google Scholar 

  63. Casas-Flores, S., & Herrera-Estrella, A. (2016). The bright and dark sides of fungal life. In I. S. Druzhinina & C. P. Kubicek (Eds.), The mycota: Environmental and microbial relationships (3rd ed., pp. 41–77). Springer. https://doi.org/10.1007/978-3-319-29532-9_3

    Chapter  Google Scholar 

  64. Liu, J. Y., Chang, M. C., Meng, J. L., Feng, C. P., Zhao, H., & Zhang, M. L. (2017). Comparative proteome reveals metabolic changes during the fruiting process in Flammulina velutipes. Journal of Agricultural and Food Chemistry, 65(24), 5091–5100. https://doi.org/10.1021/acs.jafc.7b01120

    Article  CAS  PubMed  Google Scholar 

  65. Kojima, M., Kimura, N., & Miura, R. (2015). Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: Accumulation of shikimic acid. Scientific Reports, 5(1), 1–7. https://doi.org/10.1155/2015/290161

    Article  CAS  Google Scholar 

  66. Szarka, A., Tomasskovics, B., & Bánhegyi, G. (2012). The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. International Journal of Molecular Sciences, 13(4), 4458–4483. https://doi.org/10.3390/ijms13044458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Petrović, J., Stojković, D., Reis, F. S., Barros, L., Glamočlija, J., Ćirić, A., Ferreira, I. C. F. R., & Soković, M. (2014). Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr. Food & Function, 5(7), 1441–1451.

    Article  Google Scholar 

  68. Kalač, P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218. https://doi.org/10.1002/jsfa.5960

    Article  CAS  PubMed  Google Scholar 

  69. Pinto, S., Barros, L., Sousa, M. J., & Ferreira, I. C. F. R. (2013). Chemical characterization and antioxidant properties of Lepista nuda fruiting bodies and mycelia obtained by in vitro culture: Effects of collection habitat and culture media. Food Research International, 51(2), 496–502. https://doi.org/10.1016/j.foodres.2013.01.009

    Article  CAS  Google Scholar 

  70. Chen, C. H., Ringelberg, C. S., Gross, R. H., Dunlap, J. C., & Loros, J. J. (2009). Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO Journal, 28(8), 1029–1042. https://doi.org/10.1038/emboj.2009.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zheng, W., Zhang, M., Zhao, Y., Miao, K., & Jiang, H. (2009). NMR-based metabolomic analysis on effect of light on production of antioxidant phenolic compounds in submerged cultures of Inonotus obliquus. Bioresource Technology, 100(19), 4481–4487. https://doi.org/10.1016/j.biortech.2009.04.027

    Article  CAS  PubMed  Google Scholar 

  72. Gornostai, T. Y. G., Borovskii, G. G., Kashchenko, N. I., & Olennikov, D. N. (2018). Phenolic compounds of Inonotus rheades (Agaricomycetes) mycelium: RP-UPLC-DAD-ESI/MS profile and effect of light wavelength on styrylpyrone content. International Journal of Medicinal Mushrooms, 20(7), 637–645. https://doi.org/10.1615/intjmedmushrooms.2018026595

    Article  PubMed  Google Scholar 

  73. Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042

    Article  CAS  Google Scholar 

  74. Heleno, S. A., Barros, L., Martins, A., Queiroz, M. J. R., Santos-Buelga, C., & Ferreira, I. C. F. R. (2012). Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: A comparative study of the antioxidant potential of phenolic and polysaccharidic extracts. Food Research International, 46(1), 135–140. https://doi.org/10.1016/j.foodres.2011.12.009

    Article  CAS  Google Scholar 

  75. Carvajal, A. E. S., Koehnlein, E. A., Soares, A. A., Eler, G. J., Nakashima, A. T., Bracht, A., & Peralta, R. M. (2011). Bioactives of fruiting bodies and submerged culture mycelia of Agaricus brasiliensis (A. blazei) and their antioxidant properties. LWT-Food Science and Technology, 46(2), 493–499. https://doi.org/10.1016/j.lwt.2011.11.018

    Article  CAS  Google Scholar 

  76. Reis, F. S., Barros, L., Martins, A., & Ferreira, I. C. F. R. (2012). Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food and Chemical Toxicology, 50(2), 191–197. https://doi.org/10.1016/j.fct.2011.10.056

    Article  CAS  PubMed  Google Scholar 

  77. Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  78. Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 5(35), 27540–27557. https://doi.org/10.1039/C5RA01911G

    Article  CAS  Google Scholar 

  79. González-Palma, I., Escalona-Buendía, H. B., Ponce-Alquicira, E., Téllez-Téllez, M., Gupta, V. K., Díaz-Godínez, G., & Soriano-Santos, J. (2016). Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Frontiers in Microbiology, 7, 1099. https://doi.org/10.3389/fmicb.2016.01099

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dundar, A., Okumus, V., Ozdemir, S., & Yildiz, A. (2013). Antioxidant properties of cultured mycelia from four Pleurotus species produced in submerged medium. International Journal of Food Properties, 16(5), 1105–1116. https://doi.org/10.1080/10942912.2011.576793

    Article  CAS  Google Scholar 

  81. Bertéli, M. B. D., Souza, M. M. M., Barros, L., Ferreira, I. C. F. R., Glamočlija, J., Soković, M., Dragunski, D. C., Valle, J. S., Ferreira, E. S., Pinto, L. C., Souza, C. O., Ruiz, S. P., Linde, G. A., & Colauto, N. B. (2022). Basidiocarp structures of Lentinus crinitus: An antimicrobial source against foodborne pathogens and food spoilage microorganisms. World Journal of Microbiology and Biotechnology, 38(5), 74. https://doi.org/10.1007/s11274-022-03257-w

    Article  CAS  PubMed  Google Scholar 

  82. Heleno, S. A., Ferreira, I. C. F. R., Esteves, A. P., Ćirić, A., Glamočlija, J., Martins, A., Soković, M., & Queiroz, M. J. R. P. (2013). Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food and Chemical Toxicology, 58, 95–100. https://doi.org/10.1016/j.fct.2013.04.02

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Universidade Paranaense (36900/2020), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES), Fundação Araucária, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 307953/2017-3) for financial support and fellowships. The authors are also grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support from the national funds FCT/MCTES to CIMO (UIDB/00690/2020) and P.I. for the institutional scientific employment program contract for L.B. and A.F. This research was also funded by the Serbian Ministry of Education, Science, and Technological Development (Contract No. 451-03-68/2022-14/200007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Silveira do Valle.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halabura, M.I.W., Avelino, K.V., Araújo, N.L. et al. Light conditions affect the growth, chemical composition, antioxidant and antimicrobial activities of the white-rot fungus Lentinus crinitus mycelial biomass. Photochem Photobiol Sci 22, 669–686 (2023). https://doi.org/10.1007/s43630-022-00344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00344-7

Keywords

Navigation