Skip to main content
Log in

1H-MRS application in the evaluation of response to photo-thermal therapy using iron oxide-gold core-shell nanoparticles, an in vivo study

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Background

Photo-thermal therapy (PTT) has been at the center of attention as a new method for cancer treatment in recent years. It is important to predict the response to treatment in the PTT procedure. Using magnetic resonance spectroscopy (MRS) can be considered a novel technique in evaluating changes in metabolites resulted from PTT.

Methods

In the present project, we conducted an in vivo study to assess the efficacy of 1H-MRS as a noninvasive technique to evaluate the response to treatment in the early hours following PTT. The BALB/c mice subcutaneously bearing tumor cells (CT26 cell line) were scanned by 1H-MRS before and after PTT. Iron oxide-gold core–shell (Fe3O4@Au) as PTT agent was injected into intra-peritoneal at first and then irradiated by NIR laser. Single-voxel Point RESolved Spectroscopy (PRESS) sequence (TE = 144) was used, and metabolites alternations were evaluated by the non-parametric Wilcoxon test. Besides, Nanoparticle (NP) relaxometry was conducted for negative contrast agents’ potentials.

Results

MRS choline (Cho) peak dramatically reduced 24 h post-PTT (p = 0.01) and lipid peak as a marker for necrosis of tumor elevated (p = 0.01) just in group 3 (NPs injection + laser irradiation) 24 h after the procedure.

Conclusion

1H-MRS showed its potential as a method in detecting the changes in metabolites and revealing the outcome accurately. Response to photo-thermal therapy evaluation was achievable only one day after PTT and proved by a 10-day follow-up of the tumor size. Iron oxide-gold core–shell can also be used as a negative contrast agent in MRI images during therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pearce, A., Haas, M., Viney, R., et al. (2017). Incidence and severity of self-reported chemotherapy side effects in routine care: a prospective cohort study. PLoS ONE, 12(10), 0184360. https://doi.org/10.1371/journal.pone.0184360.

    Article  CAS  Google Scholar 

  2. Taylor, C. W., & Kirby, A. M. (2015). Cardiac side-effects from breast cancer radiotherapy. Clinical Oncology, 27(11), 621–629. https://doi.org/10.1016/j.clon.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  3. Bruheim, K., Guren, M. G., Skovlund, E., Hjermstad, M. J., Dahl, O., Frykholm, G., et al. (2010). Late side effects and quality of life after radiotherapy for rectal cancer. International Journal of Radiation Oncology Biology Physics., 76(4), 1005–1011. https://doi.org/10.1016/j.ijrobp.2009.03.010.

    Article  Google Scholar 

  4. Zhou, F., Wu, S., Wu, B., Chen, W. R., & Xing, D. (2011). Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small (Weinheim an der Bergstrasse, Germany), 7(19), 2727–2735. https://doi.org/10.1002/smll.201100669.

    Article  CAS  Google Scholar 

  5. Vines, J. B., Yoon, J. H., Ryu, N. E., Lim, D. J., & Park, H. (2019). Gold nanoparticles for photothermal cancer therapy. Frontiers in Chemistry. https://doi.org/10.3389/fchem.2019.00167.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu, Y., Bhattarai, P., Dai, Z., & Chen, X. (2019). Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Review, 48(7), 2053–2108. https://doi.org/10.1039/c8cs00618k.

    Article  CAS  Google Scholar 

  7. Montazerabadi, A., Beik, J., Irajirad, R., et al. (2019). Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artifical Cells, Nanomedicine, and Biotechnology, 47(1), 330–340. https://doi.org/10.1080/21691401.2018.1557670.

    Article  CAS  Google Scholar 

  8. Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (London)., 2(5), 681–693. https://doi.org/10.2217/17435889.2.5.681.

    Article  CAS  Google Scholar 

  9. Cai, W., Gao, T., Hong, H., & Sun, J. (2008). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology Science and Applications., 12(1), 17–32. https://doi.org/10.2147/nsa.s3788.

    Article  Google Scholar 

  10. Ma, X., Tao, H., Yang, K., et al. (2012). A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 5, 199–212. https://doi.org/10.1007/s12274-012-0200-y.

    Article  CAS  Google Scholar 

  11. Zhang, M., Cao, Y., Wang, L., Ma, Y., Tu, X., & Zhang, Z. (2015). Manganese doped iron oxide theranostic nanoparticles for combined T1 magnetic resonance imaging and photothermal therapy. ACS Applied Materials Interfaces., 7(8), 4650–4658. https://doi.org/10.1021/am5080453.

    Article  CAS  PubMed  Google Scholar 

  12. Abed, Z., Beik, J., Laurent, S., et al. (2019). Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. Journal of Cancer Research and Clinical Oncology., 145(5), 1213–1219. https://doi.org/10.1007/s00432-019-02870-x.

    Article  CAS  PubMed  Google Scholar 

  13. Montazerabadi, A. R., Oghabian, M. A., Irajirad, R., Muhammadnejad, S., Ahmadvand, D., Delavari, H. H., & Mahdavi, S. R. (2015). Development of gold-coated magnetic nanoparticles as a potential MRI contrast agent. NANO, 10(04), 1550048.

    Article  CAS  Google Scholar 

  14. Jing, L., Liang, X., Lin, L., et al. (2014). Mn-porphyrin conjugated Au nanoshells encapsulating doxorubicin for potential magnetic resonance imaging and light triggered synergistic therapy of cancer. Theranostics., 4(9), 858–871. https://doi.org/10.7150/thno.8818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, H., Mu, Q., Revia, R., et al. (2018). Iron oxide-carbon core-shell nanoparticles for dual-modal imaging-guided photothermal therapy. Journal of Controlled Release: Official Journal of the Controlled Release Society., 289, 70–78. https://doi.org/10.1016/j.jconrel.2018.09.022.

    Article  CAS  Google Scholar 

  16. Estelrich, J., & Busquets, M. A. (2018). Iron oxide nanoparticles in photothermal therapy. Molecules, 23(7), 1567. https://doi.org/10.3390/molecules23071567.

    Article  CAS  PubMed Central  Google Scholar 

  17. Mirrahimi, M., Abed, Z., Beik, J., Shiri, I., Dezfuli, A. S., Mahabadi, V. P., et al. (2019). A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacological Research., 1(143), 178–185. https://doi.org/10.1016/j.phrs.2019.01.005.

    Article  CAS  Google Scholar 

  18. Zhou, J., Lu, Z., Zhu, X., et al. (2013). NIR photothermal therapy using polyaniline nanoparticles. Biomaterials, 34(37), 9584–9592. https://doi.org/10.1016/j.biomaterials.2013.08.075.

    Article  CAS  PubMed  Google Scholar 

  19. Rostami, A., & Sazgarnia, A. (2019). Gold nanoparticles as cancer theranostic agents. Nanomedicine Journal., 6(3), 147–160. https://doi.org/10.22038/nmj.2019.06.00001.

    Article  CAS  Google Scholar 

  20. Kim, M. J., Lee, S. J., Lee, J. H., et al. (2012). Detection of rectal cancer and response to concurrent chemoradiotherapy by proton magnetic resonance spectroscopy. Magnetic Resonance Imaging., 30(6), 848–853. https://doi.org/10.1016/j.mri.2012.02.013.

    Article  PubMed  Google Scholar 

  21. Zhou, J., Qiao, P. G., Zhang, H. T., Li, G. J., & Jiang, Z. F. (2018). Predicting neoadjuvant chemotherapy in nonconcentric shrinkage pattern of breast cancer using 1H-magnetic resonance spectroscopic imaging. Journal of Computer Assisted Tomography., 42(1), 12–18. https://doi.org/10.1097/rct.0000000000000647.

    Article  PubMed  Google Scholar 

  22. Chae, W. H., Niesel, K., Schulz, M., Klemm, F., Joyce, J. A., Prümmer, M., et al. (2019). evaluating magnetic resonance spectroscopy as a tool for monitoring therapeutic response of whole brain radiotherapy in a mouse model for breast-to-brain metastasis. Frontiers in Oncology., 9, 1324. https://doi.org/10.3389/fonc.2019.01324.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Toussaint, M., Pinel, S., Auger, F., Durieux, N., Thomassin, M., Thomas, E., et al. (2017). Proton MR spectroscopy and diffusion MR imaging monitoring to predict tumor response to interstitial photodynamic therapy for glioblastoma. Theranostics., 7(2), 436–451. https://doi.org/10.7150/thno.17218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kwock, L., Smith, J. K., Castillo, M., et al. (2006). Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. The Lancet Oncology., 7(10), 859–868. https://doi.org/10.1016/S1470-2045(06)70905-6.

    Article  PubMed  Google Scholar 

  25. Oh, J., Henry, R. G., Pirzkall, A., et al. (2004). Survival analysis in patients with glioblastoma multiforme: predictive value of choline-to-N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume. Journal of Magnetic Resonance Imaging., 19(5), 546–554. https://doi.org/10.1002/jmri.20039.

    Article  PubMed  Google Scholar 

  26. Yu, T. G., Feng, Y., Feng, X. Y., Dai, J. Z., Qian, H. J., & Huang, Z. (2015). Prognostic factor from MR spectroscopy in rat with astrocytic tumour during radiation therapy. The British Journal of Radiology., 88(1045), 20140418. https://doi.org/10.1259/bjr.20140418.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, H., Zhang, X., Dai, S., Ma, Y., Cui, S., Achilefu, S., & Gu, Y. (2013). Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics., 3(9), 633–649. https://doi.org/10.7150/thno.6630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, J., Park, S., Lee, J. E., et al. (2006). Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angewandte Chemie International Edition England., 45(46), 7754–7758. https://doi.org/10.1002/anie.200602471.

    Article  CAS  Google Scholar 

  29. Eyvazzadeh, N., Shakeri-Zadeh, A., Fekrazad, R., Amini, E., Ghaznavi, H., & Kamran, K. S. (2017). Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Lasers in Medical Science., 32(7), 1469–1477. https://doi.org/10.1007/s10103-017-2267-x.

    Article  PubMed  Google Scholar 

  30. Dong, W., Li, Y., Niu, D., et al. (2011). Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Advanced Materials., 23(45), 5392–5397. https://doi.org/10.1002/adma.201103521.

    Article  CAS  PubMed  Google Scholar 

  31. Ji, X., Shao, R., Elliott, A. M., Stafford, R. J., Esparza-Coss, E., Bankson, J. A., et al. (2007). Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 111(17), 6245–6251. https://doi.org/10.1021/jp0702245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verma, A., Kumar, I., Verma, N., Aggarwal, P., & Ojha, R. (2016). Magnetic resonance spectroscopy - Revisiting the biochemical and molecular milieu of brain tumors. BBA Clinical., 5, 170–178. https://doi.org/10.1016/j.bbacli.2016.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mader, I., Rauer, S., Gall, P., & Klose, U. (2008). H MR Spectroscopy of inflammation, infection and ischemia of the brain. European Journal of Radiology., 67(2), 250–257. https://doi.org/10.1016/j.ejrad.2008.02.033.

    Article  PubMed  Google Scholar 

  34. García-Figueiras, R., Baleato-González, S., Padhani, A. R., et al. (2018). Advanced imaging techniques in evaluation of colorectal cancer. Radiographics., 38(3), 740–765. https://doi.org/10.1148/rg.2018170044.

    Article  PubMed  Google Scholar 

  35. Zhou, Z., Sun, Y., Shen, J., Wei, J., Yu, C., Kong, B., et al. (2014). Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials, 35, 7470–7478. https://doi.org/10.1016/j.biomaterials.2014.04.063.

    Article  CAS  PubMed  Google Scholar 

  36. Jordan, K. W., Nordenstam, J., Lauwers, G. Y., et al. (2009). Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Diseases of the Colon and Rectum., 52(3), 520–525. https://doi.org/10.1007/DCR.0b013e31819c9a2c.

    Article  PubMed  PubMed Central  Google Scholar 

  37. García-Figueiras, R., Baleato-González, S., Padhani, A. R., Marhuenda, A., Luna, A., Alcalá, L., et al. (2016). Advanced imaging of colorectal cancer: from anatomy to molecular imaging. Insights into Imaging., 7(3), 285–309. https://doi.org/10.1007/s13244-016-0465-x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ghaznavi, H., Hosseini-Nami, S., Kamrava, S. K., Irajirad, R., Maleki, S., Shakeri-Zadeh, A., & Montazerabadi, A. (2018). Folic acid conjugated PEG coated gold–iron oxide core–shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. Artificial Cells, Nanomedicine, and Biotechnology., 46(8), 1594–1604. https://doi.org/10.1080/21691401.2017.1384384.

    Article  CAS  PubMed  Google Scholar 

  39. García-Figueiras, R., Baleato-González, S., Padhani, A. R., et al. (2016). Advanced imaging of colorectal cancer: from anatomy to molecular imaging. Insights Imaging., 2016(7), 285–309. https://doi.org/10.1007/s13244-016-0465-x.

    Article  Google Scholar 

  40. Dzik-Jurasz, A. S., Murphy, P. S., George, M., et al. (2002). Human rectal adenocarcinoma: demonstration of 1H-MR spectra in vivo at 1.5 T. Magnetic Resonance in Medicine., 47(4), 809–811. https://doi.org/10.1002/mrm.10108.

    Article  CAS  PubMed  Google Scholar 

  41. Mun, C. W., Cho, J. Y., Shin, W. J., et al. (2004). Ex vivo proton MR spectroscopy (1H-MRS) for evaluation of human gastric carcinoma. Magnetic Resonance Imaging., 22(6), 861–870. https://doi.org/10.1016/j.mri.2004.01.045.

    Article  PubMed  Google Scholar 

  42. García-Figueiras, R., Baleato-González, S., Padhani, A. R., et al. (2016). Proton magnetic resonance spectroscopy in oncology: the fingerprints of cancer? Diagnostic and Interventional Radiology., 22(1), 75–89. https://doi.org/10.5152/dir.2015.15009.

    Article  PubMed  Google Scholar 

  43. Aboagye, E. O., & Bhujwalla, Z. M. (1999). Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Research, 59(1), 80–84.

    CAS  PubMed  Google Scholar 

  44. Mountford, C. E., Saunders, J. K., May, G. L., et al. (1986). Classification of human tumours by high-resolution magnetic resonance spectroscopy. Lancet, 1(8482), 651–653. https://doi.org/10.1016/s0140-6736(86)91727-7.

    Article  CAS  PubMed  Google Scholar 

  45. Lee, J. H., Cho, K. S., Kim, Y. M., et al. (1998). Localized in vivo 1H nuclear MR spectroscopy for evaluation of human uterine cervical carcinoma. AJR. American Journal of Roentgenology, 170(5), 1279–1282. https://doi.org/10.2214/ajr.170.5.9574601.

    Article  CAS  PubMed  Google Scholar 

  46. Castillo, M., Kwock, L., & Mukherji, S. K. (1996). Clinical applications of proton MR spectroscopy. AJNR. American Journal of Neuroradiology, 17(1), 1–15.

    CAS  PubMed  Google Scholar 

  47. Kimura, T., Sako, K., Gotoh, T., Tanaka, K., & Tanaka, T. (2001). In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR in Biomedicine., 14(6), 339–349. https://doi.org/10.1002/nbm.711.

    Article  CAS  PubMed  Google Scholar 

  48. Beik, J., Asadi, M., Khoei, S., et al. (2019). Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. Journal of Photochemistry and Photobiology B: Biology., 199, 111599. https://doi.org/10.1016/j.jphotobiol.2019.111599.

    Article  CAS  Google Scholar 

  49. Asadi, M., Beik, J., Hashemian, R., et al. (2019). MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Physica Medica., 66, 124–132. https://doi.org/10.1016/j.ejmp.2019.10.002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was derived from an MSc thesis (Research project code: 981175) which has been supported by the Deputy of Research and Technology of Mashhad University of Medical Sciences, Mashhad, Iran. Authors would like to acknowledge Iranian National Brain Mapping Laboratory (NBML), Tehran, Iran, for providing data acquisition service for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Montazerabadi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsani, S., Saatchian, E., Sarikhani, A. et al. 1H-MRS application in the evaluation of response to photo-thermal therapy using iron oxide-gold core-shell nanoparticles, an in vivo study. Photochem Photobiol Sci 20, 245–254 (2021). https://doi.org/10.1007/s43630-021-00012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00012-2

Keywords

Navigation