Skip to main content
Log in

Understanding redox processes during iron precipitation in standing water: implications in formation of iron oxides minerals in the terrestrial planetary environment (especially Mars)

  • Research Paper
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

Iron oxide minerals are found associated with sulfate rocks in Meridiani Planum, Mars and in Valles Marineris, Mars. Similar occurrence of iron oxide minerals, hematite and sulfate rock is found on Earth. Many experiments are performed over the time to understand formation of iron oxide minerals and genetic link between iron oxide mineral and associated sulfate rock. Here also, an iron precipitation experiment is performed in presence of various secondary minerals. In the present experiment, the iron precipitation in the gypsum and siderite vessels occurs in increasing acidic and oxidizing conditions. And, the iron precipitation in the calcite and magnesite vessels occurs in increasing alkaline and reducing conditions. The reactions occurring between ammonium ferrous sulfate and various sulfate, carbonate minerals in separate vessels lead to iron speciation. This is evident from Eh–pH diagrams plotted for various minerals experimental vessels. Reddish-brown precipitate present in various experimental vessels suggests ferric iron precipitation and the greenish color precipitate suggests reduced ferrous iron in the system. XRD studies of the precipitated material indicate the formation of iron oxides mineral, goethite from the oxidation of ammonium ferrous sulfate compound in all experimental vessels except experimental vessels 3 and 4 (calcite + mohr’s salt ± charcoal), which have another iron oxides mineral, magnetite. The present research studies support the martian hematite formation model based on iron oxide mineral precipitation in standing water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balarew, C.: Mixed crystals and double salts between metal (II) salt hydrates. Zeitschrift Für Kristallographie-Crystalline Materials 181(1–4), 35–82 (1987)

    Google Scholar 

  • Bandfield, J.L., Glotch, T.D., Christensen, P.R.: Spectroscopic identification of carbonate minerals in the Martian dust. Science 301(5636), 1084–1087 (2003)

    Article  CAS  Google Scholar 

  • Barrón, V., Torrent, J., Greenwood, J.P.: Transformation of jarosite to hematite in simulated Martian brines. Earth Planet. Sci. Lett. 251(3–4), 380–385 (2006)

    Article  Google Scholar 

  • Bibring, J.P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F., Berthé, M.: Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312(5772), 400–404 (2006)

    Article  CAS  Google Scholar 

  • Bibring, J.P., Arvidson, R.E., Gendrin, A., Gondet, B., Langevin, Y., Le Mouelic, S., Mangold, N., Morris, R.V., Mustard, J.F., Poulet, F., Quantin, C., Sotin, C.: Coupled ferric oxides and sulfates on the Martian surface. Science 317(5842), 1206–1210 (2007)

    Article  CAS  Google Scholar 

  • Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., Wolf, M.: Schwertmannite and the chemical modelling of iron in acid sulfate waters. Geochim. Cosmochim. Acta 60(12), 2111–2121 (1996)

    Article  CAS  Google Scholar 

  • Boynton, W.V., Ming, D.W., Kounaves, S.P., Young, S.M., Arvidson, R.E., Hecht, M.H., Hoffman, J., Niles, P.B., Hamara, D.K., Quinn, R.C., Smith, P.H., Sutter, B., Catling, D.C., Morris, R.V.: Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325(5936), 61–64 (2009)

    Article  CAS  Google Scholar 

  • Carr, M.H.: Water on Mars, p. 229. Oxford University Press, New York (1996)

    Google Scholar 

  • Christensen, P.R.: Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature 422, 45–48 (2003)

    Article  CAS  Google Scholar 

  • Christensen, P.R., Ruff, S.W.: Formation of the hematite-bearing unit in Meridiani Planum: evidence for deposition in standing water. J. Geophys. Res.: Planets (2004). https://doi.org/10.1029/2003JE002233

    Article  Google Scholar 

  • Christensen, P.R., Bandfield, J.L., Clark, R.N., Edgett, K.S., Hamilton, V.E., Hoefen, T., Kieffer, H.H., Kuzmin, R.O., Lane, M.D., Malin, M.C., Morris, R.V.: Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer: evidence for near-surface water. J. Geophys. Res.: Planets 105(E4), 9623–9642 (2000)

    Article  CAS  Google Scholar 

  • Christensen, P.R., Morris, R.V., Lane, M.D., Bandfield, J.L., Malin, M.C.: Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars. J. Geophys. Res.: Planets 106(E10), 23873–23885 (2001)

    Article  CAS  Google Scholar 

  • Christensen, P.R., Wyatt, M.B., Glotch, T.D., Rogers, A.D., Anwar, S., Arvidson, R.E., Bandfield, J.L., Blaney, D.L., Budney, C., Calvin, W.M., Fallacaro, A.: Mineralogy at Meridiani Planum from the mini-TES experiment on the opportunity rover. Science 306(5702), 1733–1739 (2004)

    Article  CAS  Google Scholar 

  • Clark, B.C., Morris, R.V., McLennan, S.M., Gellert, R., Jolliff, B., Knoll, A.H., Squyres, S.W., Lowenstein, T.K., Ming, D.W., Tosca, N.J., Yen, A.: Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 240(1), 73–94 (2005)

    Article  CAS  Google Scholar 

  • Cornell, R. M., & Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrences and uses. Wiley (2003)

  • Das, R.P., Anand, S.: Precipitation of iron oxides from ammonia-ammonium sulphate solutions. Hydrometallurgy 38(2), 161–173 (1995)

    Article  CAS  Google Scholar 

  • Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Poulet, F., Bishop, J.L., Brown, A.J., Calvin, W.M., Clark, R.N., Marais, D.J., Milliken, R.E., Roach, L.H., Roush, T.L., Swayze, G.A., Wray, J.J.: Orbital identification of carbonate-bearing rocks on Mars. Science 322(5909), 1828–1832 (2008)

    Article  CAS  Google Scholar 

  • Gagliano, W.B., Brill, M.R., Bigham, J.M., Jones, F.S., Traina, S.J.: Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim. Cosmochim. Acta 68(9), 2119–2128 (2004)

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez, M.L., Grange, P., Delmon, B.: Dehydration-reduction coupling effects in the transformation of goethite to magnetite. In: Reactivity of solids, pp. 755–759. Springer, Boston (1977)

    Chapter  Google Scholar 

  • Hoffman, P.F., Macdonald, F.A., Halverson, G.P.: Chemical sediments associated with neoproterozoic glaciation: iron formation, cap carbonate, barite and phosphorite. Geol. Soc. Lond. Mem. 36(1), 67–80 (2011)

    Article  Google Scholar 

  • Housecroft, C.E., Sharpe, A.G.: Inorganic chemistry, 3rd edn. Prentice Hall, Hoboken (2008)

    Google Scholar 

  • Kaufman, A.J., Hayes, J.M., Klein, C.: Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Geochim. Cosmochim. Acta 54(12), 3461–3473 (1990)

    Article  CAS  Google Scholar 

  • King, P.L., McSween, H.Y.: Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. J. Geophys. Res. Planets (2005). https://doi.org/10.1029/2005JE002482

    Article  Google Scholar 

  • Klingelhöfer, G.R.D.S., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., De Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J.: Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306(5702), 1740–1745 (2004)

    Article  Google Scholar 

  • Lafuente, B., Downs, R.T., Yang, H., Stone, N.: The power of databases: the RRUFF project. In: Highlights in mineralogical crystallography, pp. 1–29. Walter de Gruyter GmbH, Berlin (2016)

    Google Scholar 

  • Marenco, P.J., Corsetti, F.A., Hammond, D.E., Kaufman, A.J., Bottjer, D.J.: Oxidation of pyrite during extraction of carbonate associated sulfate. Chem. Geol. 247(1–2), 124–132 (2008)

    Article  CAS  Google Scholar 

  • Marescotti, P., Carbone, C., Comodi, P., Frondini, F., & Lucchetti, G.: Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe–Cu-sulfide mine (Eastern Liguria, Italy). Appl Geochem 27(3), 577–589 (2012)

  • McLennan, S.M.: Geochemistry of sedimentary processes on Mars. Sediment. Geol. Mars 102, 119–138 (2012)

    Google Scholar 

  • McLennan, S., Grotzinger, J.: The sedimentary rock cycle of Mars. In J. Bell (Ed.), The Martian Surface: Composition, Mineralogy and Physical Properties (Cambridge Planetary Science, pp. 541–577). Cambridge: Cambridge University Press (2008). https://doi.org/10.1017/CBO9780511536076.025

  • McLennan, S.M., Bell Iii, J.F., Calvin, W.M., Christensen, P.R., Clark, B.D., De Souza, P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R., Ghosh, A.: Provenance and diagenesis of the evaporite-bearing burns formation, Meridiani Planum. Mars. Earth Planet. Sci. Lett. 240(1), 95–121 (2005)

    Article  CAS  Google Scholar 

  • Morris, R.V., Klingelhoefer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza, P.A., Wdowiak, T., Fleischer, I., Gellert, R., Bernhardt, B.: Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s jurney across sulphate rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. Planets (2006). https://doi.org/10.1029/2006JE002791

    Article  Google Scholar 

  • Morris, R.V., Ruff, S.W., Gellert, R., Ming, D.W., Arvidson, R.E., Clark, B.C., Golden, D.C., Siebach, K., Klingelhöfer, G., Schröder, C., Fleischer, I., Yen, A.S., Squyres, S.W.: Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329(5990), 421–424 (2010)

    Article  CAS  Google Scholar 

  • Muller, K.C.: Formation of iron-rimmed sandstone nodules on earth; terrestrial analogue for the formation of Martian blueberries? Graduate Thesis, Missouri University of Science and Technology. (2009)

  • Murad, E., Rojik, P.: Iron mineralogy of mine-drainage precipitates as environmental indicators: review of current concepts and a case study from the Sokolov Basin. Czech Republic. Clay Miner. 40(4), 427–440 (2005)

    Article  CAS  Google Scholar 

  • Musić, S., Popović, S., Orehovec, Z., Czakó-Nagy, I.: Properties of precipitates formed by hydrolysis of Fe3+ ions in NH4Fe(SO4)2 solutions. J. Colloid Interface Sci. 160(2), 479–482 (1993)

    Article  Google Scholar 

  • Nordstrom, D.K.: Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kittrick, J.A., Fanning, D.F., Hossner, L.R. (eds.) Acid sulfate weathering: pedo-geochemistry and relationship to manipulation of soil materials, pp. 37–56. Soil Science Society of America, Madison (1982)

    Google Scholar 

  • Peretyazhko, T., Zachara, J.M., Boily, J.F., Xia, Y., Gassman, P.L., Arey, B.W., Burgos, W.D.: Mineralogical transformations controlling acid mine drainage chemistry. Chem. Geol. 262(3–4), 169–178 (2009)

    Article  CAS  Google Scholar 

  • Posey-Dowty, J., Moskowitz, B., Crerar, D., Hargraves, R., Tanenbaum, L., Dowty, E.: Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy. Icarus 66(1), 105–116 (1986). https://doi.org/10.1016/0019-1035(86)90010-2

  • Schwertmann, U., Carlson, L.: The pH-dependent transformation of schwertmannite to goethite at 25 C. Clay Miner. 40(1), 63–66 (2005)

    Article  CAS  Google Scholar 

  • Sefton-Nash, E., Catling, D.C.: Hematitic concretions at Meridiani Planum, Mars: their growth timescale and possible relationship with iron sulfates. Earth Planet. Sci. Lett. 269(3–4), 366–376 (2008)

    Article  Google Scholar 

  • Siesser, W.G., Rogers, J.: Authigenic pyrite and gypsum in South West African continental slope sediments. Sedimentology 23(4), 567–577 (1976)

    Article  CAS  Google Scholar 

  • Squyres, S.W., Knoll, A.H.: Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240(1), 1–10 (2005)

    Article  CAS  Google Scholar 

  • Sullivan, L.A., Bush, R.T.: Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia. Mar. Freshw. Res. 55(7), 727–736 (2004)

    Article  CAS  Google Scholar 

  • Taylor, G.J.: Mars crust: made of basalt. Planetary science research discoveries report. (2009)

  • Tosca, N.J., McLennan, S.M., Dyar, M.D., Sklute, E.C., Michel, F.M.: Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. J. Geophys. Res.: Planets (2008). https://doi.org/10.1029/2007JE003019

    Article  Google Scholar 

  • Usman, M., Abdelmoula, M., Faure, P., Ruby, C., Hanna, K.: Transformation of various kinds of goethite into magnetite: effect of chemical and surface properties. Geoderma 197, 9–16 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Geology, University of Delhi, for lab facilities and CSIR-CIMFR Dhanbad for XRD analysis facility. The authors acknowledge Mr. Raimbhaum Jha for Eh-pH experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Jha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P., Das, P., Pandey, J.K. et al. Understanding redox processes during iron precipitation in standing water: implications in formation of iron oxides minerals in the terrestrial planetary environment (especially Mars). Proc.Indian Natl. Sci. Acad. 88, 729–741 (2022). https://doi.org/10.1007/s43538-022-00092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43538-022-00092-3

Keywords

Navigation