Skip to main content

Advertisement

Log in

Genetics and the Elite Athlete: Our Understanding in 2020

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Modern competitive sport has evolved so much that athletes would go to great extremes to develop themselves into champions; medicine has also evolved to the point that many genetic elements have been identified to be associated with specific athletic traits, and genetic alterations are also possible. The current review examines the published literature and looks at three important factors: genetic polymorphism influencing sporting ability, gene doping and genetic tendency to injury. The ACTN3 gene has an influence on type II muscle fibres, with the R allele being advantageous to power sports like sprinting and the XX genotype being associated with lower muscle strength and sprinting ability. The ACE gene polymorphisms are associated with cardio-respiratory efficiency and could influence endurance athletes. Many other genes are being looked at, with specific focus on those that are potentially related to enhancement of athletic ability. Recognition of these specific gene polymorphisms brings into play the concept of genetic engineering in athletes, which constitutes gene doping and is outlawed. This has the potential to develop into the next big threat in elite sports; gene doping could have dangerous and even fatal outcomes, as the knowledge of gene therapy is still in its infancy. Genetic predisposition to injury is also being identified; recent publications have increased the awareness of gene polymorphisms predisposing to injuries of ligaments and tendons due to influence on collagen structure and extracellular matrix. Ongoing work is looking at identifying the same genes from different races and different sexes to see if there are quantitative racial or sexual differences. All of the above have led to serious ethical concerns; in the twenty-first century some sports associations and some countries are looking at genetic testing for their players. Unfortunately, the science is still developing, and the experience of its application is limited worldwide. Nevertheless, this field has caught the imagination of both the public and the sportsperson, and hence the concerned doctors should be aware of the potential problems and current issues involved in understanding genetic traits and polymorphisms, genetic testing and genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Puthucheary, Z., Skipworth, J. R. A., Rawal, J., Loosemore, M., Van Someren, K., & Montgomery, H. E. (2011). Genetic influences in sport and physical performance Sports Medicine.,41(10), 845–859. https://doi.org/10.2165/11593200-000000000-00000. [cited 2019 Dec 21].

    Article  PubMed  Google Scholar 

  2. Ma, F., Yang, Y., Li, X., Zhou, F., Gao, C., Li, M., et al. (2013). The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. Gonzalez GE, editor. PLoS One,8(1), e54685. https://doi.org/10.1371/journal.pone.0054685. [cited 2019 Dec 15].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guth, L.M., & Roth, S.M. (2013) Genetic influence on athletic performance. Current Opinion in Pediatrics., 25(6):653–8. Available from: http://Insights.ovid.com/crossref?an=00008480-201312000-00004. [cited 2019 Dec 21].

  4. Davids, K., & Baker, J. (2007). Genes, environment and sport performance: Why the nature-nurture dualism is no longer relevant. Sports Medicine.,37(11), 961–980. https://doi.org/10.2165/00007256-200737110-00004. [cited 2020 Jan 13].

    Article  PubMed  Google Scholar 

  5. MacArthur, D. G., & North, K. N. (2005). Genes and human elite athletic performance. Human Genetics,116(5), 331–339. https://doi.org/10.1007/s00439-005-1261-8. [cited 2019 Dec 21].

    Article  CAS  PubMed  Google Scholar 

  6. Ahmetov, I. I., Williams, A. G., Popov, D. V., Lyubaeva, E. V., Hakimullina, A. M., Fedotovskaya, O. N., et al. (2009). The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Human Genetics,126(6), 751–761. https://doi.org/10.1007/s00439-009-0728-4. [cited 2019 Dec 21].

    Article  CAS  PubMed  Google Scholar 

  7. Ruiz, J. R., Gómez-Gallego, F., Santiago, C., González-Freire, M., Verde, Z., Foster, C., et al. (2009). Is there an optimum endurance polygenic profile?: Endurance polygenic profile. The Journal of Physiology.,587(7), 1527–1534. https://doi.org/10.1113/jphysiol.2008.166645. [cited 2019 Dec 21].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCrory, P. (2003). Super athletes or gene cheats? British Journal of Sports Medicine.,37(>3), 192–193. https://doi.org/10.1136/bjsm.37.3.192. [cited 2019 Dec 21].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, N., MacArthur, D.G., Gulbin, J.P., Hahn, A.G., Beggs, A.H., Easteal, S., et al. (2003) ACTN3 genotype is associated with human elite athletic performance. The American Journal of Human Genetics., 73(3):627–631. https://linkinghub.elsevier.com/retrieve/pii/S0002929707620242. [cited 2019 Dec 21].

  10. Yang, N., Garton, F., & North, K. (2009). α-actinin-3 and performance. In M. Collins (Ed.), Medicine and sport science (pp. 88–101). Basel: KARGER. https://www.karger.com/Article/FullText/235698[cited 2019 Dec 21].

  11. Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., et al. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports Medicine.,43(9), 803–817. https://doi.org/10.1007/s40279-013-0059-4. [cited 2019 Dec 29].

    Article  PubMed  Google Scholar 

  12. Berman, Y., & North, K. N. (2010). A gene for speed: the emerging role of α-actinin-3 in muscle metabolism. Physiology,25(4), 250–259. https://doi.org/10.1152/physiol.00008.2010. [cited 2019 Dec 29].

    Article  CAS  PubMed  Google Scholar 

  13. MacArthur, D.G., Seto, J.T., Raftery, J.M., Quinlan, K.G., Huttley, G.A., Hook, J.W., et al. (2007) Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nature Genetics., 39(10):1261–5. http://www.nature.com/articles/ng2122. [cited 2019 Dec 29].

  14. Enriquez, J., Gullans, S. (2012) Genetically enhanced olympics are coming. Nature., 487(7407):297–297. http://www.nature.com/articles/487297a. [cited 2019 Dec 15].

  15. Chiu, L.-L., Wu, Y.-F., Tang, M.-T., Yu, H.-C., Hsieh, L.-L., & Hsieh, S. S.-Y. (2011). ACTN3 genotype and swimming performance in Taiwan. International Journal of Sports Medicine,32(06), 476–480. https://doi.org/10.1055/s-0030-1263115. [cited 2019 Dec 29].

    Article  CAS  PubMed  Google Scholar 

  16. Papadimitriou, I., Papadopoulos, C., Kouvatsi, A., & Triantaphyllidis, C. (2008). The ACTN3 gene in elite greek track and field athletes. International Journal of Sports Medicine,29(4), 352–355. https://doi.org/10.1055/s-2007-965339. [cited 2019 Dec 29].

    Article  CAS  PubMed  Google Scholar 

  17. Paparini, A., Ripani, M., Giordano, G.D., Santoni, D., Pigozzi, F., Romano-Spica, V. (2007). ACTN3 genotyping by real-time PCR in the Italian population and athletes. Medicine and Science in Sports and Exercise,39(5), 810–815. https://insights.ovid.com/crossref?an=00005768-200705000-00008. [cited 2019 Dec 29].

  18. Santiago, C., Gonzalez-Freire, M., Serratosa, L., Morate, F. J., Meyer, T., Gomez-Gallego, F., et al. (2007). ACTN3 genotype in professional soccer players. British Journal of Sports Medicine.,42(1), 71–73. https://doi.org/10.1136/bjsm.2007.039172. [cited 2019 Dec 30].

    Article  PubMed  Google Scholar 

  19. Macarthur, D. G., & North, K. N. (2010). The ACTN3 gene and human performance. In C. Bouchard, E. P. Hoffman, & E. P. Hoffman (Eds.), Genetic and molecular aspects of sport performance (pp. 204–214). Oxford: Wiley-Blackwell. https://doi.org/10.1002/9781444327335.ch18. [cited 2019 Dec 29].

    Chapter  Google Scholar 

  20. Niemi, A.-K., Majamaa, K. (2005). Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. European Journal of Human Genetics., 13(8):965–9. http://www.nature.com/articles/5201438. [cited 2020 Jan 19].

  21. Yang, N., Macarthur, D.G., Wolde, B., Onywera, V.O., Boit, M.K., Lau, S.Y.M.-A., et al. (2007). The ACTN3 R577X polymorphism in east and west african athletes. Medicine and Science in Sports and Exercise., 39(11):1985–8. https://insights.ovid.com/crossref?an=00005768-200711000-00013. [cited 2020 Jan 19].

  22. Druzhevskaya, A. M., Ahmetov, I. I., Astratenkova, I. V., & Rogozkin, V. A. (2008). Association of the ACTN3 R577X polymorphism with power athlete status in Russians. European Journal of Applied Physiology.,103(6), 631–634. https://doi.org/10.1007/s00421-008-0763-1. [cited 2020 Jan 19].

    Article  CAS  PubMed  Google Scholar 

  23. Döring, F. E., Onur, S., Geisen, U., Boulay, M. R., Pérusse, L., Rankinen, T., et al. (2010). ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. Journal of Sports Sciences,28(12), 1355–1359.

    Article  Google Scholar 

  24. Muniesa, C. A., González-Freire, M., Santiago, C., Lao, J. I., Buxens, A., Rubio, J. C., et al. (2010). World-class performance in lightweight rowing: is it genetically influenced? A comparison with cyclists, runners and non-athletes. British Journal of Sports Medicine,44(12), 898–901.

    Article  Google Scholar 

  25. Ruiz, J. R., Arteta, D., Buxens, A., Artieda, M., Gómez-Gallego, F., Santiago, C., et al. (2010). Can we identify a power-oriented polygenic profile? Journal of Applied Physiology.,108(3), 561–566. https://doi.org/10.1152/japplphysiol.01242.2009. [cited 2020 Jan 19].

    Article  PubMed  Google Scholar 

  26. Shang, X., Huang, C., Chang, Q., Zhang, L., & Huang, T. (2010). Association between the ACTN3 R577X polymorphism and female endurance athletes in China. International Journal of Sports Medicine,31(12), 913–916.

    Article  CAS  Google Scholar 

  27. Ginevičienė, V., Pranculis, A., Jakaitienė, A., Milašius, K., & Kučinskas, V. (2011). Genetic variation of the human ACE and ACTN3 genes and their association with functional muscle properties in Lithuanian elite athletes. Medicina (Kaunas),47(5), 284–290.

    Google Scholar 

  28. Kikuchi, N., Min, S., Ueda, D., Igawa, S., Nakazato, K.(2012). Higher frequency of the ACTN3 R Allele + ACE DD genotype in Japanese Elite Wrestlers. Journal of Strength and Conditioning Research., 26(12):3275–80. https://insights.ovid.com/crossref?an=00124278-201212000-00013. [cited 2020 Jan 19].

  29. Montgomery, H.E., Marshall, R., Hemingway, H., Myerson, S., Clarkson, P., Dollery, C., et al. (1998). Human gene for physical performance. Nature., 393(6682):221–2. http://www.nature.com/articles/30374. [cited 2019 Dec 21].

  30. Rigat, B., Hubert, C., Alhenc-Gelas, F., Cambien, F., Corvol, P., Soubrier, F. (1990). An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. Journal of Clinical Investigation., 86(4):1343–6. http://www.jci.org/articles/view/114844. [cited 2019 Dec 21].

  31. Williams, A.G., Rayson, M.P., Jubb, M., World, M., Woods, D.R., Hayward, M., et al. (2000) The ACE gene and muscle performance. Nature., 403(6770):614–614. http://www.nature.com/articles/35001141. [cited 2019 Dec 29].

  32. Cambien, F., Poirier, O., Lecerf, L., Evans, A., Cambou, J.-P., Arveiler, D., et al. (1992). Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature., 359(6396):641–4. http://www.nature.com/articles/359641a0. [cited 2019 Dec 29].

  33. Tiret, L., Nicaud, V., Kee, F., Evans, A., Cambou, J.P., Arveiler, D., et al. (1993). Deletion polymorphism in angiotensin-converting enzyme gene associated with parental history of myocardial infarction. The Lancet., 341(8851):991–2. https://linkinghub.elsevier.com/retrieve/pii/014067369391075W. [cited 2019 Dec 29].

  34. Jones, A., Montgomery, H.E., Woods, D.R. (2002) Human performance: A role for the ACE genotype? Exercise and Sport Sciences Reviews., 30(4):184–90. https://insights.ovid.com/crossref?an=00003677-200210000-00008. [cited 2019 Dec 29].

  35. Oh, S. D. (2007). The distribution of I/D polymorphism in the ACE gene among Korean male elite athletes. Journal of Sports Medicine and Physical Fitness,47(2), 250–254.

    CAS  PubMed  Google Scholar 

  36. Gayagay, G., Yu, B., Hambly, B., Boston, T., Hahn, A., Celermajer, D. S., et al. (1998). Elite endurance athletes and the ACE I allele—the role of genes in athletic performance. Human Genetics,103(1), 48–50. https://doi.org/10.1007/s004390050781. [cited 2019 Dec 29].

    Article  CAS  PubMed  Google Scholar 

  37. Cieszczyk, P., Krupecki, K., Maciejewska, A., & Sawczuk, M. (2009). The angiotensin converting enzyme gene I/D polymorphism in polish rowers. International Journal of Sports Medicine,30(08), 624–627. https://doi.org/10.1055/s-0029-1202825. [cited 2019 Dec 29].

    Article  CAS  PubMed  Google Scholar 

  38. Myerson, S., Hemingway, H., Budget, R., Martin, J., Humphries, S., Montgomery, H., et al. (1999). Human angiotensin I-converting enzyme gene and endurance performance. Journal of Applied Physiology.,87(4), 1313–1316. https://doi.org/10.1152/jappl.1999.87.4.1313. [cited 2019 Dec 29].

    Article  CAS  PubMed  Google Scholar 

  39. Min, S.-K., Takahashi, K., Ishigami, H., Hiranuma, K., Mizuno, M., Ishii, T., et al. (2009). Is there a gender difference between ACE gene and race distance? Applied Physiology, Nutrition, and Metabolism,34(5), 926–932. https://doi.org/10.1139/H09-097. [cited 2019 Dec 29].

    Article  CAS  PubMed  Google Scholar 

  40. Tsianos, G., Sanders, J., Dhamrait, S., Humphries, S., Grant, S., & Montgomery, H. (2004). The ACE gene insertion/deletion polymorphism and elite endurance swimming. European Journal of Applied Physiology. https://doi.org/10.1007/s00421-004-1120-7. [cited 2019 Dec 29].

    Article  PubMed  Google Scholar 

  41. Amir, O., Amir, R., Yamin, C., Attias, E., Eynon, N., Sagiv, M., et al. (2007). The ACE deletion allele is associated with Israeli elite endurance athletes: The ACE deletion allele in elite athletes. Experimental Physiology.,92(5), 881–886. https://doi.org/10.1113/expphysiol.2007.038711. [cited 2019 Dec 29].

    Article  CAS  PubMed  Google Scholar 

  42. Danser, A. H. J., Schalekamp, M. A. D. H., Bax, W. A., van den Brink, A. M., Saxena, P. R., Riegger, G. A. J., et al. (1995). Angiotensin-converting enzyme in the human heart: Effect of the deletion/insertion polymorphism. Circulation.,92(6), 1387–1388. https://doi.org/10.1161/01.CIR.92.6.1387. [cited 2019 Dec 21].

    Article  CAS  PubMed  Google Scholar 

  43. Taylor, R. R., Mamotte, C. D. S., Fallon, K., & van Bockxmeer, F. M. (1999). Elite athletes and the gene for angiotensin-converting enzyme. Journal of Applied Physiology,87(3), 1035–1037. https://doi.org/10.1152/jappl.1999.87.3.1035. [cited 2020 Jan 19].

    Article  CAS  PubMed  Google Scholar 

  44. Alvarez, R., Terrados, N., Ortolano, R., Iglesias-Cubero, G., Reguero, J. R., Batalla, A., et al. (2000). Genetic variation in the renin-angiotensin system and athletic performance. European Journal of Applied Physiology.,82(1–2), 117–120. https://doi.org/10.1007/s004210050660. [cited 2020 Jan 19].

    Article  CAS  PubMed  Google Scholar 

  45. Rankinen, T., Wolfarth, B., Simoneau, J.-A., Maier-Lenz, D., Rauramaa, R., Rivera, M. A., et al. (2000). No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. Journal of Applied Physiology,88(5), 1571–1575. https://doi.org/10.1152/jappl.2000.88.5.1571. [cited 2020 Jan 19].

    Article  CAS  PubMed  Google Scholar 

  46. Nazarov, I.B., Woods, D.R., Montgomery, H.E., Shneider, O.V., Kazakov, V.I., Tomilin, N.V., et al. (2001) The angiotensin converting enzyme I/D polymorphism in Russian athletes. European Journal of Human Genetics., 9(10):797–801. http://www.nature.com/articles/5200711. [cited 2020 Jan 19].

  47. Collins, M., Xenophontos, S.L., Cariolou, M.A., Mokone, G.G., Hudson, D.E., Anastasiades, L., et al. (2004). The ACE gene and endurance performance during the South African ironman triathlons. Medicine and Science in Sports and Exercise., 36(8):1314–20. https://insights.ovid.com/crossref?an=00005768-200408000-00008. [cited 2020 Jan 19].

  48. Kim, C.-H., Cho, J.-Y., Jeon, J. Y., Koh, Y. G., Kim, Y.-M., Kim, H.-J., et al. (2010). ACE DD genotype is unfavorable to Korean short-term muscle power athletes. International Journal of Sports Medicine,31(01), 65–71. https://doi.org/10.1055/s-0029-1239523. [cited 2020 Jan 19].

    Article  CAS  PubMed  Google Scholar 

  49. Massidda, M., Corrias, L., Ibba, G., Scorcu, M., Vona, G., & Calò, C. M. (2012). Genetic markers and explosive leg-muscle strength in elite Italian soccer players. Journal of Sports Medicine and Physical Fitness,52(3), 328–334.

    CAS  PubMed  Google Scholar 

  50. Unal, M., & Ozer, Unal D. (2004). Gene doping in sports. Sports Medicine.,34(6), 357–362. https://doi.org/10.2165/00007256-200434060-00002.

    Article  PubMed  Google Scholar 

  51. Gretchen Reynolds. (2007). Outlaw DNA. The New York Times. https://www.nytimes.com/2007/06/03/sports/playmagazine/0603play-hot.html.

  52. DW staff (tt). (2006) German coach suspected of genetic doping. DW.com. https://www.dw.com/en/german-coach-suspected-of-genetic-doping/a-1890782.

  53. Sean Ingle. (2019). Groundbreaking’ gene test to detect doping may be ready for Tokyo 2020. The Guardian.

  54. Corrigan, B. (2002). Beyond EPO. Clinical Journal of Sport Medicine., 12(4):242–4. https://insights.ovid.com/crossref?an=00042752-200207000-00007. [cited 2019 Dec 29].

  55. Zhou, S., Murphy, J., Escobedo, J., Dwarki, V. (1998) Adeno-associated virus-mediated delivery of erythropoietin leads to sustained elevation of hematocrit in nonhuman primates. Gene Therapy., 5(5):665–70. http://www.nature.com/articles/3300648. [cited 2019 Dec 29].

  56. Barton-Davis, E. R., Shoturma, D. I., Musaro, A., Rosenthal, N., & Sweeney, H. L. (1998). Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proceedings of the National Academy of Sciences.,95(26), 15603–15607. https://doi.org/10.1073/pnas.95.26.15603. [cited 2019 Dec 29].

    Article  CAS  Google Scholar 

  57. Lee, S.-J., McPherron, A.C. (1999). Myostatin and the control of skeletal muscle mass. Current Opinion in Genetics and Development., 9(5):604–7. https://linkinghub.elsevier.com/retrieve/pii/S0959437X99000040. [cited 2019 Dec 29].

  58. Murphy, J. E., Zhou, S., Giese, K., Williams, L. T., Escobedo, J. A., & Dwarki, V. J. (1997). Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin. Proceedings of the National academy of Sciences of the United States of America,94(25), 13921–13926.

    Article  CAS  Google Scholar 

  59. Baumgartner, I., Pieczek, A., Manor, O., Blair, R., Kearney, M., Walsh, K., et al. (1998). Constitutive Expression of phVEGF After Intramuscular Gene Transfer Promotes Collateral Vessel Development in Patients With Critical Limb Ischemia. Circulation.,97(12), 1114–1123. https://doi.org/10.1161/01.CIR.97.12.1114. [cited 2019 Dec 29].

    Article  CAS  PubMed  Google Scholar 

  60. Parisotto, R., Wu, M., Ashenden, M. J., Emslie, K. R., Gore, C. J., Howe, C., et al. (2001). Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis. Haematologica,86(2), 128–137.

    CAS  PubMed  Google Scholar 

  61. Longo, U., Loppini, M., Margiotti, K., Salvatore, G., Berton, A., Khan, W., et al. (2014). Unravelling the genetic susceptibility to develop ligament and tendon injuries. CSCR., 10(1):56–63. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1574-888X&volume=10&issue=1&spage=56. [cited 2019 Dec 21].

  62. Wang, C., Li, H., Chen, K., Wu, B., & Liu, H. (2017). Association of polymorphisms rs1800012 in COL1A1 with sports-related tendon and ligament injuries: a meta-analysis. Oncotarget, 8, 27627–27634. http://www.oncotarget.com/fulltext/15271. [cited 2019 Dec 21].

  63. John, R., Dhillon, M. S., Sharma, S., Prabhakar, S., & Bhandari, M. (2016). Is there a genetic predisposition to anterior cruciate ligament tear? A systematic review. The American Journal of Sports Medicine,44(12), 3262–3269. https://doi.org/10.1177/0363546515624467. [cited 2017 Jun 16].

    Article  PubMed  Google Scholar 

  64. Posthumus, M., September, A. V., Keegan, M., O’Cuinneagain, D., Van der Merwe, W., Schwellnus, M. P., et al. (2009). Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. British Journal of Sports Medicine,43(5), 352–356. https://doi.org/10.1136/bjsm.2008.056150. [cited 2017 Jun 16].

    Article  CAS  PubMed  Google Scholar 

  65. Maffulli, N., Margiotti, K., Longo, U. G., Loppini, M., Fazio, V. M., & Denaro, V. (2013). The genetics of sports injuries and athletic performance. Muscles Ligaments Tendons J.,3(3), 173–189.

    PubMed  PubMed Central  Google Scholar 

  66. Pruna, R., Artells, R., Ribas, J., Montoro, B., Cos, F., Muñoz, C., et al. (2013). Single nucleotide polymorphisms associated with non-contact soft tissue injuries in elite professional soccer players: influence on degree of injury and recovery time. BMC Musculoskeletal Disorders,14(1), 221. https://doi.org/10.1186/1471-2474-14-221. [cited 2019 Dec 29].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khoschnau, S., Melhus, H., Jacobson, A., Rahme, H., Bengtsson, H., Ribom, E., et al. (2008). Type I collagen ? 1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. The American Journal of Sports Medicine.,36(12), 2432–2436. https://doi.org/10.1177/0363546508320805. [cited 2017 Jun 16].

    Article  PubMed  Google Scholar 

  68. Collins, M., Posthumus, M., & Schwellnus, M. P. (2010). The COL1A1 gene and acute soft tissue ruptures. British Journal of Sports Medicine,44(14), 1063–1064.

    Article  Google Scholar 

  69. Goodlin, G.T., Roos, T.R., Roos, A.K., Kim, S.K. (2015) The dawning age of genetic testing for sports injuries. Clinical Journal of Sport Medicine., 25(1):1–5. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00042752-201501000-00001. [cited 2019 Dec 29].

  70. Ficek, K., Cieszczyk, P., Kaczmarczyk, M., Maciejewska-Karłowska, A., Sawczuk, M., Cholewinski, J., et al. (2013). Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. Journal of Science and Medicine in Sport,16(5), 396–400.

    Article  Google Scholar 

  71. Stępien-Słodkowska, M., Ficek, K., Eider, J., Leońska-Duniec, A., Maciejewska-Karłowska, A., Sawczuk, M., et al. (2013). The +1245g/t polymorphisms in the collagen type i alpha 1 (col1a1) gene in polish skiers with anterior cruciate ligament injury. Biology of Sport., 30(1):57–60. http://biolsport.com/abstracted.php?level=5&ICID=1029823. [cited 2017 Jun 16].

  72. Wagner, J.K. (2013). Playing with heart and soul…and genomes: sports implications and applications of personal genomics. PeerJ., 1:e120. https://peerj.com/articles/120. [cited 2019 Dec 30].

  73. Wagner, J.K., Royal, C.D. (2012) Field of genes: An investigation of sports-related genetic testing. JPM., 2(3):119–37. http://www.mdpi.com/2075-4426/2/3/119. [cited 2019 Dec 30].

  74. Kambouris, M., Ntalouka, F., Ziogas, G., Maffulli, N. (2012) Predictive genomics DNA profiling for athletic performance. DNAG., 6(3):229–39. http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1872-2156&volume=6&issue=3&spage=229. [cited 2019 Dec 30].

  75. Robotham, J. (2001). Pro boxers face going down for the gene count. The Sydney Morning Herald,1, A3.

    Google Scholar 

  76. Dennis, C. (2005). Rugby team converts to give gene tests a try. Nature,434(7031), 260.

    Article  CAS  Google Scholar 

  77. Jim Litke .(2005). Curry’s DNA fight with Bulls “bigger than sports world.” http://sports.espn.go.com/nba/news/story?id=2174877.

  78. Assael, S. (2012) Cheating is so 1999: A reporter spends a year searching for the athletic holy grail—a sports gene. ESPN The Magazine. http://m.espn.go.com/general/story?storyId=8153641&wjb=&pg=3.

  79. Schmidt, M., & Schwarz, A. (2009). Baseball’s use of DNA tests on prospects finds controversy, too. New York Times,22, A1.

    Google Scholar 

  80. Zarda. (2010). Lawsuit prompts NCAA to screen athletes for sickle cell. USA today. http://usatoday30.usatoday.com/sports/college/2010-06-30-sickle-cell-ncaa-cover_N.htm.

  81. Marsh, B. (2011). DNA clue to football injuries. The sunday times http://www.thesundaytimes.co.uk/sto/news/uk_news/article799536.ece.

  82. Siegel, A., Alvarez, F. (2010). Sickle-cell testing and the implications of GINA. Sports litig alert. http://www.sportslitigationalert.com/archive/2010_05_21.php.

  83. Watts, S. (2012). Olympic Team GB trials gene tests for injury. BBC news. www.bbc.com/news/health-18970982.

  84. Williamson, L. (2014). Two Premier League clubs sign up with top genetics company to learn DNA profiles of players. Daily Mail., http://www.dailymail.co.uk/sport/football/article-2582714/Two-Premier-League-clubs-sign-genetics-company-learn-DNA-profiles-players.html.

  85. Synovitz, R.; Eshanova, Z. (2014). Uzbekistan is using genetic testing to find future olympians. The Atlantic., http://www.theatlantic.com/international/archive/2014/02/uzbekistan-is-using-genetic-testing-to-find-future-olympians/283001/.

  86. Mike Rowbottom. (2018). China to use gene testing in athlete selection for Beijing 2022. https://www.insidethegames.biz/articles/1069612/china-to-use-gene-testing-in-athlete-selection-for-beijing-2022.

  87. McNamee, M. J., Müller, A., van Hilvoorde, I., & Holm, S. (2009). Genetic testing and sports medicine ethics. Sports Medicine,39(5), 339–344. https://doi.org/10.2165/00007256-200939050-00001. [cited 2019 Dec 30].

    Article  PubMed  Google Scholar 

  88. Vlahovich, N., Fricker, P. A., Brown, M. A., & Hughes, D. (2017). Ethics of genetic testing and research in sport: a position statement from the Australian Institute of Sport. British Journal of Sports Medicine.,51(1), 5–11. https://doi.org/10.1136/bjsports-2016-096661. [cited 2019 Dec 30].

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep Singh Dhillon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, R., Dhillon, M.S. & Dhillon, S. Genetics and the Elite Athlete: Our Understanding in 2020. JOIO 54, 256–263 (2020). https://doi.org/10.1007/s43465-020-00056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-020-00056-z

Keywords

Navigation