Skip to main content

Advertisement

Log in

The consolidation of SiC ceramics using MAX phases as a new family of sintering activators

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper discusses the influence of Ti3AlC2—MAX phase addition, intended to act as a sintering activator and a strengthening phase, to silicon carbide. The composites are prepared via powder processing and consolidated using the spark plasma sintering (SPS) method. The effects of the Ti3AlC2 addition on microstructure, sinterability, and mechanical properties were evaluated. The addition of MAX phases allows for the production of high-density sinters containing TiC as the reinforcing phase. Titanium carbide is formed as a result of the thermal degradation of Ti3AlC2. The highest hardness of 2540 HV5 was obtained for a sample containing 15 wt. % of Ti3AlC2, while the highest fracture toughness of 4.15 MPa*m0.5 for the sample containing 20 wt. %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data analyzed during the current study will be available upon reasonable request.

References

  1. Longbiao L. Tensile strength of ceramic-matrix composites. In: Jones G, Silva IC, editors. Durability of ceramic-matrix composites. Elsevier; 2020. p. 145–91. https://doi.org/10.1016/C2018-0-03346-0.

    Chapter  Google Scholar 

  2. Bansal NP. Handbook of ceramic composites. Dordrecht: Kluwe Academic Publisher; 2005.

    Book  Google Scholar 

  3. Serbena FC, Zanotto ED. Internal residual stresses in glass-ceramics: a review. J Non-Cryst Solids. 2012;358:975–84. https://doi.org/10.1016/j.jnoncrysol.2012.01.040.

    Article  Google Scholar 

  4. Porwal H, Grasso S, Reece MJ. Review of graphene–ceramic matrix composites. Adv Appl Ceram. 2013;112:443–54. https://doi.org/10.1179/174367613X13764308970581.

    Article  Google Scholar 

  5. Sabry I, Hewidy AM. Underwater friction-stir welding of a stir-cast AA6061-SiC metal matrix composite: optimization of the process parameters, microstructural characterization, and mechanical properties. Mater Sci Pol. 2022;40:68–115. https://doi.org/10.2478/msp-2022-0013.

    Article  Google Scholar 

  6. Petrus M, Wozniak J, Jastrzębska A, Kostecki M, Cygan T, Olszyna A. The effect of the morphology of carbon used as a sintering aid on the sinterability of silicon carbide. Ceram Int. 2018;44:7020–5. https://doi.org/10.1016/j.ceramint.2018.01.136.

    Article  Google Scholar 

  7. van Rijswijk W, Shanefield DJ. Effects of carbon as a sintering aid in silicon carbide. J Am Ceram Soc. 1990;73:148–9. https://doi.org/10.1111/j.1151-2916.1990.tb05109.x.

    Article  Google Scholar 

  8. Delobel F, Lemonnier S, D’Elia R, Cambedouzou J. Effects of density on the mechanical properties of spark plasma sintered β-SiC. Ceram Int. 2020;46:13244–54. https://doi.org/10.1016/j.ceramint.2020.02.101.

    Article  Google Scholar 

  9. Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall. 2002;45:322–8. https://doi.org/10.1179/003258902225007041.

    Article  Google Scholar 

  10. Guillon O. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater. 2014;16:830–49. https://doi.org/10.1002/adem.201300409.

    Article  Google Scholar 

  11. Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc. 1981;64:533–8. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.

    Article  Google Scholar 

  12. Curtin WA. Theory of mechanical properties of ceramic-matrix composites. J Am Ceram Soc. 1991;74:2837–45. https://doi.org/10.1111/j.1151-2916.1991.tb06852.x.

    Article  Google Scholar 

  13. Román-Manso B, Domingues E, Figueiredo FM, Belmonte M, Miranzo P. Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets. J Eur Ceram Soc. 2015;35:723–2731. https://doi.org/10.1016/j.jeurceramsoc.2015.03.044.

    Article  Google Scholar 

  14. Ohya Y, Hoffmann MJ, Petzow G. Sintering of in-situ synthesized SiC–TiB2 composites with improved fracture toughness. J Am Ceram Soc. 1992;75:2479–83. https://doi.org/10.1111/j.1151-2916.1992.tb05600.x.

    Article  Google Scholar 

  15. Petrus M, Woźniak J, Cygan T, Lachowski A, Moszczyńska D, Adamczyk-Cieślak B, Rozmysłowska-Wojciechowska A, Wojciechowski T, Ziemkowska W, Jastrzębska A, Olszyna A. Influence of Ti3C2Tx MXene and surface-modified Ti3C2Tx MXene addition on microstructure and mechanical properties of silicon carbide composites sintered via spark plasma sintering method. Materials. 2021;9:3558. https://doi.org/10.3390/ma14133558.

    Article  Google Scholar 

  16. Petrus M, Woźniak J, Cygan T, Lachowski A, Rozmysłowska-Wojciechowska A, Wojciechowski T, Ziemkowska W, Chlubny L, Jastrzębska A, Adamczyk-Cieślak B, Olszyna A. Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sintering. Arch Civ Mech Eng. 2021;21:1–12. https://doi.org/10.1007/s43452-021-00236-0.

    Article  Google Scholar 

  17. Petrus M, Wozniak J, Cygan T, Adamczyk-Cieslak B, Kostecki M, Olszyna A. Sintering behaviour of silicon carbide matrix composites reinforced with multilayer graphene. Ceram Int. 2017;43:5007–13. https://doi.org/10.1016/j.ceramint.2017.01.010.

    Article  Google Scholar 

  18. Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res. 2011;41:195–227. https://doi.org/10.1146/annurev-matsci-062910-100448.

    Article  Google Scholar 

  19. Barsoum MW, El-Raghy T. The MAX phases: Unique new carbide and nitride materials: tertiary ceramics are soft and machinable, yet heat-tolerant, strong and light weight. Am Sci. 2001;89:334–43. https://doi.org/10.1511/2001.4.334.

    Article  Google Scholar 

  20. Jeitschko W, Nowotny H. Die Kristallstruktur von Ti3SiC2—ein neuer Komplexcarbid-Typ. Monatshefte für Chem Chem Mon. 1967;98:329–37. https://doi.org/10.1007/BF00899949.

    Article  Google Scholar 

  21. Low IM, Pang WK. Thermal stability of MAX phases. Key Eng Mater. 2014;617:153–8. https://doi.org/10.4028/www.scientific.net/KEM.617.153.

    Article  Google Scholar 

  22. Qian XK. Methods of MAX-phase synthesis and densification—I. In: Low IM, editor. Advances in science and technology of Mn+1AXn phases. Amsterdam: Elsevier; 2012. p. 1–19. https://doi.org/10.1533/9780857096012.1.

    Chapter  Google Scholar 

  23. Barsoum MW, Brodkin D, El-Raghy T. Layered machinable ceramics for high temperature applications. Scr Mater. 1997;36:535–41. https://doi.org/10.1016/S1359-6462(96)00418-6.

    Article  Google Scholar 

  24. Frodelius J, Sonestedt M, Björklund S, Palmquist J, Stiller K, Högberg H, Hultman L. Ti2AlC coatings deposited by high velocity oxy-fuel spraying. Surf Coat Technol. 2008;24:5976–81. https://doi.org/10.1016/j.surfcoat.2008.06.184.

    Article  Google Scholar 

  25. Sonestedt M, Frodelius J, Sundberg M, Hultman L, Stiller K. Oxidation of Ti2AlC bulk and spray deposited coatings. Corros Sci. 2010;12:3955–61. https://doi.org/10.1016/j.corsci.2010.08.004.

    Article  Google Scholar 

  26. Barsoum MW, El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceram Soc. 1996;79:1953–6. https://doi.org/10.1111/J.1151-2916.1996.TB08018.X.

    Article  Google Scholar 

  27. Jiaoqun Z, Bingchu M. Effect of aluminum on synthesis of Ti3SiC2 by spark plasma sintering (SPS) from elemental powders. J Mater Synth Process. 2002;6:353–8. https://doi.org/10.1023/A:1023889920488.

    Article  Google Scholar 

  28. Zhou W, Mei B, Zhu J, Hong X. Synthesis of high-purity Ti3SiC2 and Ti3AlC2 by spark plasma sintering (SPS) technique. J Mater Sci. 2005;8:2099–100. https://doi.org/10.1007/s10853-005-1245-z.

    Article  Google Scholar 

  29. Chen JX, Zhou YC, Zhang HB, Wan DT, Liu MY. Thermal stability of Ti3AlC2/Al2O3 composites in high vacuum. Mater Chem Phys. 2007;104:109–12. https://doi.org/10.1016/j.matchemphys.2007.02.091.

    Article  Google Scholar 

  30. Gusev AI. Mechanical properties of nonstoichiometric cubic titanium carbide TiCy. Phys Chem Chem Phys. 2021;23:18558–67. https://doi.org/10.1039/D1CP02697F.

    Article  Google Scholar 

  31. Barsoum MW, Houng B. Transient plastic phase processing of Titanium–Boron–Carbon composites. J Am Ceram Soc. 1993;76:1445–51. https://doi.org/10.1111/J.1151-2916.1993.TB03924.X.

    Article  Google Scholar 

  32. Nayebi B, Asl MS, Akhlaghi M, Ahmadi Z, Tayebifard SA, Salahi E, Shokouhimehr M, Mohammadi M. Spark plasma sintering of TiB2-based ceramics with Ti3AlC2. Ceram Int. 2021;7:11929–34. https://doi.org/10.1016/j.ceramint.2021.01.033.

    Article  Google Scholar 

  33. Zheng L, Li F, Zhou Y. Preparation, Microstructure, and mechanical properties of TiB2 using Ti3AlC2 as a sintering aid. J Am Ceram Soc. 2012;95:2028–34. https://doi.org/10.1111/j.1551-2916.2012.05204.x.

    Article  Google Scholar 

  34. Shahedi Asl M, Nayebi B, Akhlaghi M, Ahmadi Z, Tayebifard SA, Salahi E, Shokouhimehr M, Mohammad M. A novel ZrB2-based composite manufactured with Ti3AlC2 additive. Ceram Int. 2021;47:817–27. https://doi.org/10.1016/j.ceramint.2020.08.193.

    Article  Google Scholar 

  35. Tan Y, Luo H, Zhang H, Zhou X, Peng S. Fabrication of toughened B4C composites with high electrical conductivity using MAX phase as a novel sintering aid. Ceram Int. 2016;42:7347–52. https://doi.org/10.1016/j.ceramint.2016.01.133.

    Article  Google Scholar 

  36. Tan YQ, Chen C, Li FZ, Zhang HB, Zhang GJ, Peng SM. Enhancement of sinterability and mechanical properties of B4C ceramics using Ti3AlC2 as a sintering aid. RSC Adv. 2015;5:76309–14. https://doi.org/10.1039/C5RA14191E.

    Article  Google Scholar 

  37. Petrus M, Wozniak J, Cygan T, Pawlak W, Olszyna A. Novel alumina matrix composites reinforced with MAX phases-microstructure analysis and mechanical properties. Materials. 2022;15:6909–24. https://doi.org/10.3390/ma15196909.

    Article  Google Scholar 

  38. Pang WK, Low IM, O’Connor BH, Studer AJ, Peterson VK, Sun ZM, Palmquist JP. Comparison of thermal stability in MAX 211 and 312 phases. J Phys Conf Ser. 2010;25:1–4. https://doi.org/10.1088/1742-6596/251/1/012025.

    Article  Google Scholar 

  39. Kornaus K, Grabowski G, Raczka M, Zientara D, Gubernat A. Mechanical properties of hot-pressed SiC-TiC composites. Process Appl Ceram. 2017;11:329–36. https://doi.org/10.2298/PAC1704329K.

    Article  Google Scholar 

  40. Kim YW, Lee SG, Lee YI. Pressureless sintering of SiC-TiC composites with improved fracture toughness. J Mater Sci. 2000;35:5569–74. https://doi.org/10.1023/A:1004848828322.

    Article  Google Scholar 

  41. Alliegro RA, Coffin LB, Tinklepaugh JR. Pressure-sintered silicon carbide. J Am Ceram Soc. 1956;39:386–9. https://doi.org/10.1111/j.1151-2916.1956.tb15609.x.

    Article  Google Scholar 

  42. Vlaskina S, Mishinova G, Vlaskin V, Rodionov V, Svechnikov G. 3C–6H transformation in heated cubic silicon carbide 3C–SiC. Semicond Phys Quantum Electron Optoelectron. 2011;14:432–6. https://doi.org/10.15407/spqeo14.04.432.

    Article  Google Scholar 

  43. Xu H, Bhatia T, Deshpande SA, Padture NP, Ortiz AL, Cumbrera FL. Microstructural evolution in liquid-phase-sintered SiC: part I, effect of starting powder. J Am Ceram Soc. 2001;84:1578–84. https://doi.org/10.1111/j.1151-2916.2001.tb00880.x.

    Article  Google Scholar 

  44. Deshpande SA, Bhatia T, Xu H, Padture NP, Ortiz AL, Cumbrera FL. Microstructural evolution in liquid-phase-sintered SiC: part II, effects of planar defects and seeds in the starting powder. J Am Ceram Soc. 2001;84:1585–90. https://doi.org/10.1111/j.1151-2916.2001.tb00881.x.

    Article  Google Scholar 

Download references

Funding

Financial support from the Polish Ministry of Science and Higher Education is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Wozniak.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article's content.

Ethical approval

This manuscript presents original work that has not been published previously and is not under consideration for publication elsewhere. No studies on human or animal subjects were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wozniak, J., Petrus, M., Moszczynska, D. et al. The consolidation of SiC ceramics using MAX phases as a new family of sintering activators. Archiv.Civ.Mech.Eng 24, 101 (2024). https://doi.org/10.1007/s43452-024-00934-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00934-5

Keywords

Navigation