Skip to main content
Log in

A review on the effect of various rolling regimes (cryo, cold, warm, hot) and post-annealing on high-entropy alloys: microstructure evolution, deformation mechanisms, and mechanical properties

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 20 December 2023

This article has been updated

Abstract

Despite their complex composition, high-entropy alloys (HEAs) have a simple structure and have been extensively researched for their ability to achieve unique properties through thermo-mechanical processing (TMP). This review studies the effects of different rolling regimes and post-annealing on single and multiphase HEAs, analyzing how TMP leads to microstructural changes and improved mechanical properties. The rolling changes the shape and utilizes different mechanisms determined by the rolling temperature to strengthen the raw materials, thus affecting the HEAs' properties. The microstructural evolution of HEAs during annealing is affected by various parameters such as annealing time, annealing temperature, and heating rate, which impact the strength–ductility combination of HEAs. According to the literature, cryogenic rolling (cryo-rolling), as opposed to cold rolling, provides greater strengthening. This is due to the faster microstructural evolution kinetics in cryo-rolling. Thus, cryo-rolling enhances the strengthening by activating deformation twinning at earlier stages through the intersection of twins and more shear banding, which is preferred to microbands for HEAs with low stacking fault energy (SFE). Rolling at high temperatures is the most suitable approach for HEAs with low workability. Warm and hot rolling enable microstructure evolution through deformation mechanisms, including grain growth, recovery, recrystallization, and phase transformation based on the process temperature. The ratio of recovery to recrystallization depends on temperature and SFE, with recovery dominating in alloys with high SFE and at lower rolling temperatures, while recrystallization is more prevalent for alloys with low SFE and at higher temperatures, leading to specific ductility–strength synergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213. https://doi.org/10.1016/j.msea.2003.10.257.

    Article  Google Scholar 

  2. Elkatatny S, Gepreel MAH, Hamada A, Nakamura K, Yamanaka K, Chiba A. Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12Fe35Mn28Ni20 high-entropy alloy. Mater Sci Eng A. 2019;759:380. https://doi.org/10.1016/j.msea.2019.05.056.

    Article  Google Scholar 

  3. Tsai C-W, Tsai M-H, Yeh J-W, Yang C-C. Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. J Alloys Compd. 2010;490:160. https://doi.org/10.1016/j.jallcom.2009.10.088.

    Article  Google Scholar 

  4. Hou J, Qiao J, Lian J, Liaw PK. Revealing the relationship between microstructures, textures, and mechanical behaviors of cold-rolled Al01CoCrFeNi high-entropy alloys. Mater Sci Eng A. 2021;804:140752. https://doi.org/10.1016/j.msea.2021.140752.

    Article  Google Scholar 

  5. Sun SJ, Tian YZ, An XH, Lin HR, Wang JW, Zhang ZF. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure. Mater Today NANO. 2018;4:46. https://doi.org/10.1016/j.mtnano.2018.12.002.

    Article  Google Scholar 

  6. Hachet D, Gorsse S, Godet S. Microstructure study of cold rolled Al0.32CoCrFeMnNi high-entropy alloy: interactions between recrystallization and precipitation. Mater Sci Eng A. 2021;802:140452. https://doi.org/10.1016/j.msea.2020.140452.

    Article  Google Scholar 

  7. Eißmann N, Klöden B, Weißgärber T, Kieback B. High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. 2017;60:184. https://doi.org/10.1080/00325899.2017.1318480.

    Article  Google Scholar 

  8. Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299. https://doi.org/10.1002/adem.200300567.

    Article  Google Scholar 

  9. Su J, Raabe D, Li Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Mater. 2019;163:40. https://doi.org/10.1016/j.actamat.2018.10.017.

    Article  Google Scholar 

  10. Zhang T, Zhao RD, Wu FF, et al. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy. Mater Sci Eng A. 2020;780: 139182. https://doi.org/10.1016/j.msea.2020.139182.

    Article  Google Scholar 

  11. Shi J, Zhao YW, Jiang CL, et al. Development of single-phase bcc UHfNbTi high-entropy alloy with excellent mechanical properties. Mater Lett. 2022;307: 130822. https://doi.org/10.1016/j.matlet.2021.130822.

    Article  Google Scholar 

  12. Sunkari U, Reddy SR, Rathod BDS, et al. Heterogeneous precipitation mediated heterogeneous nanostructure enhances strength-ductility synergy in severely cryo-rolled and annealed CoCrFeNi2.1Nb0.2 high entropy alloy. Sci Rep. 2020;10:6056. https://doi.org/10.1038/s41598-020-63038-z.

    Article  Google Scholar 

  13. Bhattacharjee T, Wani IS, Sheikh S, et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci Rep. 2018;8:3276. https://doi.org/10.1038/s41598-018-21385-y.

    Article  Google Scholar 

  14. Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics. 2015;59:8. https://doi.org/10.1016/j.intermet.2014.12.004.

    Article  Google Scholar 

  15. Tsai CW, Tsai MH, Tsai KY, Chang SY, Yeh JW, Yeh AC. Microstructure and tensile properties of Al0.5CoCrCuFeNi alloys produced by simple rolling and annealing. Mater Sci Technol. 2015;31:1178. https://doi.org/10.1179/1743284714Y.0000000754.

    Article  Google Scholar 

  16. Mehranpour MS, Shahmir H, Nili-ahmadabadi M. Microstructure and excess free volume of severely cold shape rolled CoCrFeNiMn high entropy alloy. J Alloys Compd. 2020;840: 155672. https://doi.org/10.1016/j.jallcom.2020.155672.

    Article  Google Scholar 

  17. Li C, Lu Y, Li X, Zhao Z, Kou S, Liaw PK. Microstructures and properties of Fe1.25CoNi1.25CrxAl0.25 high-entropy alloys after cold-rolling and annealing. J Non-Cryst Solids. 2021;570:121023. https://doi.org/10.1016/j.jnoncrysol.2021.121023.

    Article  Google Scholar 

  18. Ren Y, Wu H, Liu B, et al. A novel L12-strengthened AlCoCuFeNi high-entropy alloy with both high hardness and good corrosion resistance. Mater Lett. 2023;331:133339. https://doi.org/10.1016/j.matlet.2022.133339.

    Article  Google Scholar 

  19. Yu W, Liu X, Li W, et al. Improvement of the corrosion performance of a cold-rolled Co40Cr20Ni30Al5Ti5 high-entropy alloy by adjusting annealing treatments. J Mater Res Technol. 2023;24:3984. https://doi.org/10.1016/j.jmrt.2023.04.042.

    Article  Google Scholar 

  20. Sathiaraj GD, Tsai CW, Yeh JW, Jahazi M, Bhattacharjee PP. The effect of heating rate on microstructure and texture formation during annealing of heavily cold-rolled equiatomic CoCrFeMnNi high entropy alloy. J Alloys Compd. 2016;688:752. https://doi.org/10.1016/j.jallcom.2016.07.155.

    Article  Google Scholar 

  21. Sathiaraj GD, Ahmed MZ, Bhattacharjee PP. Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J Alloys Compd. 2016;664:109. https://doi.org/10.1016/j.jallcom.2015.12.172.

    Article  Google Scholar 

  22. Won JW, Kang M, Kwon H-J, Lim KR, Seo SM, Na YS. Edge-cracking behavior of CoCrFeMnNi high-entropy alloy during hot rolling. Met Mater Int. 2018;24:1432. https://doi.org/10.1007/s12540-018-0129-0.

    Article  Google Scholar 

  23. Guo T, Li J, Wang J, et al. Microstructure and properties of bulk Al0.5CoCrFeNi high-entropy alloy by cold rolling and subsequent annealing. Mater Sci Eng A. 2018;729:141. https://doi.org/10.1016/j.msea.2018.05.054.

    Article  Google Scholar 

  24. Pérez P, Medina J, Vega MF, Garcés G, Adeva P. Control of the microstructure in a Al5Co15Cr30Fe25Ni25 high entropy alloy through thermo-mechanical and thermal treatments. Metals. 2023. https://doi.org/10.3390/met13010180.

    Article  Google Scholar 

  25. Tayyebi M, Alizadeh M. Thermal and wear properties of Al/Cu functionally graded metal matrix composite produced by severe plastic deformation method. J Manuf Process. 2023;85:515. https://doi.org/10.1016/j.jmapro.2022.11.059.

    Article  Google Scholar 

  26. Schmidt S, Sathiaraj GD, Kumar SS, et al. Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy. Mater Chem Phys. 2021;270: 124830. https://doi.org/10.1016/j.matchemphys.2021.124830.

    Article  Google Scholar 

  27. Wang K, Sun Y, Yu H, et al. Microstructure evolution and mechanical behavior of a CoCrFeNiMn0.75Cu0.25 high-entropy alloy by thermo-mechanical treatment. Mater Sci Eng A. 2022;860:144274. https://doi.org/10.1016/j.msea.2022.144274.

    Article  Google Scholar 

  28. Ma Z, Zhang W, Zhao H, et al. Enhanced strength and slightly reduced ductility in a high entropy alloy via cold rolling and annealing. J Alloys Compd. 2020;817: 152709. https://doi.org/10.1016/j.jallcom.2019.152709.

    Article  Google Scholar 

  29. Gu J, Ni S, Liu Y, Song M. Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment. Mater Sci Eng A. 2019;755:289. https://doi.org/10.1016/j.msea.2019.04.025.

    Article  Google Scholar 

  30. Liu Z, Xiong Z, Chen K, Cheng X. Large-size high-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy produced by hot-rolling and subsequent aging. Mater Lett. 2022;315:131933. https://doi.org/10.1016/j.matlet.2022.131933.

    Article  Google Scholar 

  31. Wu Y, Liu S, Luo K, Kong C, Yu H. Deformation mechanism and mechanical properties of a CoCrFeNi high-entropy alloy via room-temperature rolling, cryorolling, and asymmetric cryorolling. J Alloys Compd. 2023;960:170883. https://doi.org/10.1016/j.jallcom.2023.170883.

    Article  Google Scholar 

  32. Wang Y, Huang P, Liu S, Tayyebi M, Tayebi M. Microstructural evolution, shielding effectiveness, and the ballistic response of Mg/Al7075/B4C/Pb composite produced by combination of coating and severe plastic deformation (SPD) processes. J Manuf Process. 2022;84:977. https://doi.org/10.1016/j.jmapro.2022.10.062.

    Article  Google Scholar 

  33. Sajadi SA, Toroghinejad MR, Rezaeian A, Ebrahimi GR. Dynamic recrystallization behavior of the equiatomic FeCoCrNi high-entropy alloy during high temperature deformation. J Mater Res Technol. 2022;20:1093. https://doi.org/10.1016/j.jmrt.2022.07.055.

    Article  Google Scholar 

  34. Hou J, Zhang M, Ma S, Liaw PK, Zhang Y, Qiao J. Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater Sci Eng A. 2017;707:593. https://doi.org/10.1016/j.msea.2017.09.089.

    Article  Google Scholar 

  35. Wu W, Guo L, Guo B, Liu Y, Song M. Altered microstructural evolution and mechanical properties of CoCrFeNiMo0.15 high-entropy alloy by cryogenic rolling. Mater Sci Eng A. 2019. https://doi.org/10.1016/j.msea.2019.05.078.

    Article  Google Scholar 

  36. He Y, Yang H, Zhao C, et al. Enhancing mechanical properties of Al0.25CoCrFeNi high-entropy alloy via cold rolling and subsequent annealing. J Alloys Compd. 2020;830:154645. https://doi.org/10.1016/j.jallcom.2020.154645.

    Article  Google Scholar 

  37. Reddy SR, Sunkari U, Lozinko A, Saha R, Guo S, Bhattacharjee PP. Microstructural design by severe warm-rolling for tuning mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics. 2019;114:106601. https://doi.org/10.1016/j.intermet.2019.106601.

    Article  Google Scholar 

  38. Jang MJ, Praveen S, Sung HJ, Bae JW, Moon J, Kim HS. High-temperature tensile deformation behavior of hot rolled CrMnFeCoNi high-entropy alloy. J Alloy Compd. 2018;730:242. https://doi.org/10.1016/j.jallcom.2017.09.293.

    Article  Google Scholar 

  39. Sathiaraj GD, Bhattacharjee PP, Tsai C-W, Yeh J-W. Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics. 2016;69:1. https://doi.org/10.1016/j.intermet.2015.10.005.

    Article  Google Scholar 

  40. Dasari S, Sarkar A, Sharma A, et al. Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation. Acta Mater. 2021;202:448. https://doi.org/10.1016/j.actamat.2020.10.071.

    Article  Google Scholar 

  41. Reddy SR, Ahmed MZ, Sathiaraj GD, Bhattacharjee PP. Effect of strain path on microstructure and texture formation in cold-rolled and annealed FCC equiatomic CoCrFeMnNi high entropy alloy. Intermetallics. 2017;87:94. https://doi.org/10.1016/j.intermet.2017.04.016.

    Article  Google Scholar 

  42. Rezaee A, Ketabchi M, Shams SAA, Jafarian HR, Lee CS. Characteristics of the cold-rolled multi-phase Cr30Fe30Ni15Co10Cu10Ti5 high-entropy alloy. Met Mater Int. 2023;29:1366. https://doi.org/10.1007/s12540-022-01296-4.

    Article  Google Scholar 

  43. Jo YH, Jung S, Choi WM, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun. 2017;8:15719. https://doi.org/10.1038/ncomms15719.

    Article  Google Scholar 

  44. Baker I, Meng F, Wu M, Brandenberg A. Recrystallization of a novel two-phase FeNiMnAlCr high entropy alloy. J Alloy Compd. 2016;656:458. https://doi.org/10.1016/j.jallcom.2015.09.264.

    Article  Google Scholar 

  45. Sellars CM, Whiteman JA. Recrystallization and grain growth in hot rolling. Met Sci. 1979;13:187. https://doi.org/10.1179/msc.1979.13.3-4.187.

    Article  Google Scholar 

  46. Taali S, Moazzen P, Toroghinejad MR, Chen G, Mola J. Microstructure, texture, and mechanical properties of asymmetrically cold-rolled Ni1.5FeCrCu0.5 high-entropy alloy. J Mater Res Technol. 2022;21:3489. https://doi.org/10.1016/j.jmrt.2022.10.147.

    Article  Google Scholar 

  47. Reddy SR, Sunkari U, Lozinko A, Guo S, Bhattacharjee PP. Development and homogeneity of microstructure and texture in a lamellar AlCoCrFeNi2.1 eutectic high-entropy alloy severely strained in the warm-deformation regime. J Mater Res. 2019;34:687. https://doi.org/10.1557/jmr.2018.409.

    Article  Google Scholar 

  48. Li Y, Zhou J, Liu Y, et al. Microstructural evolution and mechanical characterization for the AlCoCrFeNi2.1 eutectic high-entropy alloy under different temperatures. Fatigue Fracture Eng Mater Struct. 2023;46:1881. https://doi.org/10.1111/ffe.13970.

    Article  Google Scholar 

  49. Wu SW, Xu L, Ma XD, et al. Effect of annealing temperatures on microstructure and deformation behavior of Al0.1CrFeCoNi high-entropy alloy. Mater Sci Eng A. 2021;805:140523. https://doi.org/10.1016/j.msea.2020.140523.

    Article  Google Scholar 

  50. Liang X, Kang L, Li H, et al. Effect of annealing temperature on anisotropy of mechanical properties in powder metallurgy FeCoCrNiN0.07 high-entropy alloy sheets. Mater Sci Eng A. 2021;823:141585. https://doi.org/10.1016/j.msea.2021.141585.

    Article  Google Scholar 

  51. Huaizhi Q, Minglong G, Dongdong Z, et al. Effect of heat treatment time on the microstructure and properties of FeCoNiCuTi high-entropy alloy. J Mater Res Technol. 2023;24:4510. https://doi.org/10.1016/j.jmrt.2023.04.078.

    Article  Google Scholar 

  52. Fang W, Chang R, Liu B, et al. Influence of warm-rolling and annealing temperature on the microstructure and mechanical properties of ductile non-equal molar Co40Cr25Fe10Ni25 high entropy alloys. Mater Chem Phys. 2018;216:429. https://doi.org/10.1016/j.matchemphys.2018.06.032.

    Article  Google Scholar 

  53. Shi P, Ren W, Zheng T, et al. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun. 2019;10:489. https://doi.org/10.1038/s41467-019-08460-2.

    Article  Google Scholar 

  54. C Xia, L Bu, Q Zhou (2022) Annealing hardening behaviour of cold rolled Al0.5CoNiCu high-entropy alloy. J Phys Conf Ser 2338: 012050. Doi:https://doi.org/10.1088/1742-6596/2338/1/012050

  55. Gu J, Song M. Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy. Scripta Mater. 2019;162:345. https://doi.org/10.1016/j.scriptamat.2018.11.042.

    Article  Google Scholar 

  56. Hou J, Wang Z, Shi X, Wang Z, Qiao J, Wu Y. Strengthening of an Al0.45CoCrFeNi high-entropy alloy via in situ fabricated duplex-structured composites. J Mater Sci. 2020;55:7894. https://doi.org/10.1007/s10853-020-04550-5.

    Article  Google Scholar 

  57. Nguyen NT-C, Asghari-Rad P, Park H, Kim HS. Differential superplasticity in a multi-phase multi-principal element alloy by initial annealing. J Mater Sci. 2022;57:18154. https://doi.org/10.1007/s10853-022-07616-8.

    Article  Google Scholar 

  58. Wang H, Chen X, Zhou H, Jiang Y, Liu P. Static recrystallized annealing treatment-induced strength-ductility trade-off in cold-rolled Co36Fe36Cr18Ni10 multi-principal alloy. Mater Charact. 2021;179:111254. https://doi.org/10.1016/j.matchar.2021.111254.

    Article  Google Scholar 

  59. Tu C-H, Lai Y-C, Wu S-K, Lin Y-H. The effects of annealing on severely cold-rolled equiatomic HfNbTiZr high entropy alloy. Mater Lett. 2021;303: 130526. https://doi.org/10.1016/j.matlet.2021.130526.

    Article  Google Scholar 

  60. Zhang Z, Gu J, Song M. Precipitation behaviors and mechanical properties of a cold-rolled equiatomic FeCoCrNiMn high entropy alloy after long-time annealing treatment at 500 °C. Mater Lett. 2023;333:133681. https://doi.org/10.1016/j.matlet.2022.133681.

    Article  Google Scholar 

  61. Eleti RR, Raju V, Veerasham M, Reddy SR, Bhattacharjee PP. Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy. Mater Charact. 2018;136:286. https://doi.org/10.1016/j.matchar.2017.12.034.

    Article  Google Scholar 

  62. Lozinko A, Gholizadeh R, Zhang Y, et al. Evolution of microstructure and mechanical properties during annealing of heavily rolled AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater Sci Eng A. 2022;833:142558. https://doi.org/10.1016/j.msea.2021.142558.

    Article  Google Scholar 

  63. Ebrahimian M, Rizi MS, Hong SI, Kim JH. Effects of molybdenum on hot deformation behavior and microstructural evolution of Fe40Mn40Co10Cr10C0.5 high entropy alloys. Sci Technol Adv Mater. 2023;24:2186119. https://doi.org/10.1080/14686996.2023.2186119.

    Article  Google Scholar 

  64. Zhang Y, Li J, Wang J, Niu S, Kou H. Hot deformation behavior of as-cast and homogenized Al0.5CoCrFeNi high entropy alloys. Metals. 2016;6:277. https://doi.org/10.3390/met6110277.

    Article  Google Scholar 

  65. Guo NN, Wang L, Luo LS, et al. Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy. Mater Sci Eng A. 2016;651:698. https://doi.org/10.1016/j.msea.2015.10.113.

    Article  Google Scholar 

  66. Tayebi M, Polkowski W, Lech S, Polkowska A, Tayyebi M, Assari AH. Effect of heat treatment parameters on microstructure evolution, tensile strength, wear resistance and fracture behavior of Ni-Ti multilayered composites produced by cross-accumulative roll bonding. Arch Civ Mech Eng. 2022. https://doi.org/10.1007/s43452-022-00557-8.

    Article  Google Scholar 

  67. Mehranpour MS, Shahmir H, Nili-ahmadabadi M. CoCrFeNiMn high entropy alloy microstructure and mechanical properties after severe cold shape rolling and annealing. Mater Sci Eng A. 2020;793: 139884. https://doi.org/10.1016/j.msea.2020.139884.

    Article  Google Scholar 

  68. Shabani A, Toroghinejad MR. Evaluation of microstructure and texture formation during annealing of cold-rolled FeCrCuMnNi multiphase high-entropy alloy. Trans Nonferr Met Soc China. 2020;30:449. https://doi.org/10.1016/S1003-6326(20)65225-6.

    Article  Google Scholar 

  69. Sathiaraj GD, Bhattacharjee PP. Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy. Mater Charact. 2015;109:189. https://doi.org/10.1016/j.matchar.2015.09.027.

    Article  Google Scholar 

  70. Wani IS, Bhattacharjee T, Sheikh S, Bhattacharjee PP, Guo S, Tsuji N. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater Sci Eng A. 2016;675:99. https://doi.org/10.1016/j.msea.2016.08.048.

    Article  Google Scholar 

  71. Klimova MV, Shaysultanov DG, Chernichenko RS, Sanin VN, Zherebtsov SV, Stepanov ND. Kinetics of recrystallization and grain growth in an ultra-fine grained CoCrFeNiMn-type high-entropy alloy. J Phys Conf Ser. 2019;1270: 012053. https://doi.org/10.1088/1742-6596/1270/1/012053.

    Article  Google Scholar 

  72. Senkov ON, Pilchak AL, Semiatin SL. Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy. Metall Mater Trans A. 2018;49:2876. https://doi.org/10.1007/s11661-018-4646-8.

    Article  Google Scholar 

  73. Senkov ON, Semiatin SL. Microstructure and properties of a refractory high-entropy alloy after cold working. J Alloy Compd. 2015;649:1110. https://doi.org/10.1016/j.jallcom.2015.07.209.

    Article  Google Scholar 

  74. Zhou W, Fu L, Liu P, et al. Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics. 2017. https://doi.org/10.1016/j.intermet.2017.02.010.

    Article  Google Scholar 

  75. Zherebtsov S, Yurchenko N, Shaysultanov DG, Tikhonovsky M, Salishchev G, Stepanov N. Microstructure and mechanical properties evolution in HfNbTaTiZr refractory high entropy alloy during cold rolling. Adv Eng Mater. 2020. https://doi.org/10.1002/adem.202000105.

    Article  Google Scholar 

  76. Yurchenko N, Panina E, Zherebtsov S, Tikhonovsky M, Salishchev G, Stepanov N. Microstructure evolution of a novel low-density Ti–Cr–Nb–V refractory high entropy alloy during cold rolling and subsequent annealing. Mater Charact. 2019;158:109980. https://doi.org/10.1016/j.matchar.2019.109980.

    Article  Google Scholar 

  77. He F, Zhijun W, Wu Q, et al. Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy. Scripta Mater. 2018. https://doi.org/10.1016/j.scriptamat.2018.06.002.

    Article  Google Scholar 

  78. Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015;94:124. https://doi.org/10.1016/j.actamat.2015.04.014.

    Article  Google Scholar 

  79. Guo L, Ou X, Ni S, Liu Y, Song M. Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys. Mater Sci Eng A. 2019;746:356. https://doi.org/10.1016/j.msea.2019.01.050.

    Article  Google Scholar 

  80. Shukla S, Choudhuri D, Wang T, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy. Mater Res Lett. 2018;6:676. https://doi.org/10.1080/21663831.2018.1538023.

    Article  Google Scholar 

  81. Jiang S, D sun, Y Zhang, S Wang, C Zhao,. Plastic deformation mechanisms of equiatomic Ni20Ti20Fe20Al20Cu20 high-entropy alloy at high temperatures. J Mater Sci. 2017;52:3199. https://doi.org/10.1007/s10853-016-0609-x.

    Article  Google Scholar 

  82. Sunkari U, Reddy SR, Rathod BDS, et al. Tuning nanostructure using thermo-mechanical processing for enhancing mechanical properties of complex intermetallic containing CoCrFeNi2.1Nbx high entropy alloys. Mater Sci Eng A. 2020;769:138489. https://doi.org/10.1016/j.msea.2019.138489.

    Article  Google Scholar 

  83. Reddy TS, Wani IS, Bhattacharjee T, Reddy SR, Saha R, Bhattacharjee PP. Severe plastic deformation driven nanostructure and phase evolution in a Al0.5CoCrFeMnNi dual phase high entropy alloy. Intermetallics. 2017;91:150. https://doi.org/10.1016/j.intermet.2017.09.002.

    Article  Google Scholar 

  84. Li Z, Tasan C, Raabe D. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Mater. 2017;131:323. https://doi.org/10.1016/j.actamat.2017.03.069.

    Article  Google Scholar 

  85. Ma Y, Hao J, Wang Q, Zhang C, Li C, Dong C. Temperature-affected microstructural stability of coherent cuboidal B2 particles in precipitation-strengthened body-centered-cubic Al07CoCr2FeNi high-entropy alloy. J Mater Sci. 2019;54:8696. https://doi.org/10.1007/s10853-019-03459-y.

    Article  Google Scholar 

  86. Reddy SR, Yoshida S, Bhattacharjee T, et al. Nanostructuring with structural-compositional dual heterogeneities enhances strength-ductility synergy in eutectic high entropy alloy. Sci Rep. 2019;9:11505. https://doi.org/10.1038/s41598-019-47983-y.

    Article  Google Scholar 

  87. Yang S, Yang Y, Wang H. The characteristic and thermodynamics/kinetics of martensitic transformation in Fe50Mn30Co10Cr10 high-entropy alloy during deformation/heat treatment. Adv Eng Mater. 2020;22:1900868. https://doi.org/10.1002/adem.201900868.

    Article  Google Scholar 

  88. Bormio-Nunes C, Cardoso FM, da Silva Teixeira R, Bastos JF. Understanding of the duplex high entropy of FeCoNiCuAl alloys magnetic properties dependence on the CuAl amount and annealing temperature. J Alloys Compd. 2022;923:166301. https://doi.org/10.1016/j.jallcom.2022.166301.

    Article  Google Scholar 

  89. Bała P, Górecki K, Bednarczyk W, Wątroba M, Lech S, Kawałko J. Effect of high-temperature exposure on the microstructure and mechanical properties of the Al5Ti5Co35Ni35Fe20 high-entropy alloy. J Mater Res Technol. 2020;9:551. https://doi.org/10.1016/j.jmrt.2019.10.084.

    Article  Google Scholar 

  90. Hsu K-M, Lin C-S. Microstructural and electrochemical characterization of the passive film on a 50-kg hot rolled FeCrNiCoMn high entropy alloy. Mater Today Commun. 2021;26:101979. https://doi.org/10.1016/j.mtcomm.2020.101979.

    Article  Google Scholar 

Download references

Funding

This research received no specific grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moslem Tayyebi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the originally published version of this article, the affiliation of the second author was incorrectly stated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayyebi, M., DerakhshaniMolayousefi, M. A review on the effect of various rolling regimes (cryo, cold, warm, hot) and post-annealing on high-entropy alloys: microstructure evolution, deformation mechanisms, and mechanical properties. Archiv.Civ.Mech.Eng 24, 16 (2024). https://doi.org/10.1007/s43452-023-00826-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00826-0

Keywords

Navigation