Skip to main content

Advertisement

Log in

Energy absorption, free and forced vibrations of flexoelectric nanocomposite magnetostrictive sandwich nanoplates with single sinusoidal edge on the frictional torsional viscoelastic medium

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Most studies on the nanoscale mainly focus on regular rectangular nanoplates, but according to the synthesis of nanostructures, the dynamic response of non-rectangular nanoplates is noticeable and there are not many works on these complex nanostructures. This work presents energy absorption, and forced and free vibrations of sandwich non-rectangular nanoplates with a single sinusoidal edge resting on a fractional torsional viscoelastic medium. The nanostructure is made from alumina reinforced by graphene platelets (GPLs) as a core covered by the flexoelectric and magnetostrictive materials as top and bottom layers, respectively. The consideration of size effects is derived from the innovative theory of local/nonlocal phenomena in a two-phase context. The Halpin–Tsai micromechanical and Kelvin–Voigt models are applied for the effective characteristics of the material in the nanocomposite layer and structural damping, respectively. Based on Hamilton’s principle and refined zigzag theory (RZT), the coupled electro-magneto-mechanical equations of motion are gained and analyzed by Galerkin’s and Newmark’s procedures. The effects of different components, including factors related to both the nonlocal and local phase fractions, the volume fraction of GPLs, various elastic mediums, electric field, structural damping, magnetic field, piezoelectric and flexoelectric effects on the absorption of energy, and forced and free vibrations of the sandwich nanostructure. Numerical simulations demonstrate that optimal energy absorption occurs when the flexoelectric factor is set to zero and the piezoelectric constant is non-zero but of opposite polarity. Additionally, it is concluded that when the coefficient of the local phase fraction is zero, increasing the nonlocal factor has more influence on the energy absorption and vibration of the nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan Z, Jiang LY. Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J Appl Phys. 2013. https://doi.org/10.1063/1.4804949.

    Article  Google Scholar 

  2. Zarepour M, Hosseini SAH, Akbarzadeh AH. Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen’s differential model. Appl Math Model. 2019;69:563–82. https://doi.org/10.1016/j.apm.2019.01.001.

    Article  MathSciNet  Google Scholar 

  3. Zeng S, Wang BL, Wang KF. Analyses of natural frequency and electromechanical behavior of flexoelectric cylindrical nanoshells under modified couple stress theory. J Vib Control. 2019;25:559–70.

    Article  MathSciNet  Google Scholar 

  4. Zeng S, Wang BL, Wang KF. Nonlinear vibration of piezoelectric sandwich nanoplate with a functionally graded porous core with consideration of flexoelectric effect. Compos Struct. 2019;207:340–51.

    Article  Google Scholar 

  5. Naskar S, Shingare KB, Mondal S, Mukhopadhyay T. Flexoelectricity and surface effects on coupled electromechanical responses of graphene reinforced functionally graded nanocomposites: a unified size-dependent semi-analytical framework. Mech Syst Signal Process. 2022;169:108757. https://doi.org/10.1016/j.ymssp.2021.108757.

    Article  Google Scholar 

  6. Cong PH, Duc ND. Effect of nonlocal parameters and Kerr foundation on nonlinear static and dynamic stability of micro/nano plate with graphene platelet reinforcement. Thin Walled Struct. 2023;182: 110146.

    Article  Google Scholar 

  7. Yu P, Leng W, Peng L, Su Y, Guo J. The bending and vibration responses of functionally graded piezoelectric nanobeams with dynamic flexoelectric effect. Results Phys. 2021;28:104624.

    Article  Google Scholar 

  8. Zhang Y, Zhou H, Zhou Y. Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mech Solida Sin. 2015;28:50–61.

    Article  Google Scholar 

  9. Hong CC. Thermal vibration and transient response of magnetostrictive functionally graded material plates. Eur J Mech A Solids. 2014;43:78–88.

    Article  ADS  MathSciNet  Google Scholar 

  10. Patil MA, Kadoli R. Differential quadrature solution for vibration control of functionally graded beams with Terfenol-D layer. Appl Math Model. 2020;84:137–57. https://doi.org/10.1016/j.apm.2020.03.035.

    Article  MathSciNet  Google Scholar 

  11. Zenkour AM, El-Shahrany HD. Vibration suppression of advanced plates embedded magnetostrictive layers via various theories. J Market Res. 2020;9:4727–48.

    Google Scholar 

  12. Mohammadrezazadeh S, Jafari AA. Nonlinear vibration suppression of laminated composite conical shells on elastic foundations with magnetostrictive layers. Compos Struct. 2021;258:113323.

    Article  Google Scholar 

  13. Al-Furjan MSH, Farrokhian A, Mahmoud SR, Kolahchi R. Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact. Thin Walled Struct. 2021;163: 107706.

    Article  Google Scholar 

  14. Yuan Y, Zhao X, Zhao Y, Sahmani S, Safaei B. Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin Walled Struct. 2021;159: 107249.

    Article  Google Scholar 

  15. Ninh DG, Quan NM, Hoang VNV. Thermally vibrational analyses of functionally graded graphene nanoplatelets reinforced funnel shells with different complex shapes surrounded by elastic foundation. Mech Adv Maters Struct. 2022;29:4654–76.

    Article  CAS  Google Scholar 

  16. Ninh DG, Hoang VNV. A new shell study for dynamical characteristics of nanocomposite shells with various complex profiles—sinusoidal and cosine shells. Eng Struct. 2022;251:113354.

    Article  Google Scholar 

  17. Ninh DG, Vang TV, Ha NH, Long NT, Nguyen CT, Dao DV. Effect of cracks on dynamical responses of double-variable-edge plates made of graphene nanoplatelets-reinforced porous matrix and sur-bonded by piezoelectric layers subjected to thermo-mechanical loads. Eur J Mech A/Solids. 2022;96:104742.

    Article  MathSciNet  Google Scholar 

  18. Ha NH, Long NT, Khoi LNT, Ninh DG, Hung NC, Nguyen CT, Dao DV. Research on vibrational characteristics of nanocomposite double-variable-edge plates immersed in liquid under the effect of explosive loads. Ocean Eng. 2022. https://doi.org/10.1016/j.oceaneng.2022.112093.

    Article  Google Scholar 

  19. Hoang VNV, Minh VT, Ninh DG, Nguyen CT, Huy VL. Effects of non-uniform elastic foundation on the nonlinear vibration of nanocomposite plates in thermal environment using Selvadurai methodology. Compos Struct. 2020;253:112812.

    Article  Google Scholar 

  20. Wang YQ, Ye C, Zu JW. Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp Sci Technol. 2019;85:359–70.

    Article  Google Scholar 

  21. Selim MM, Althobaiti S. Wave-based method for longitudinal vibrational analysis of irregular single-walled carbon nanotube with elastic-support boundary conditions. Alex Eng J. 2022;61(12):12129–38.

    Article  Google Scholar 

  22. Fang J, Yin B, Zhang X, Yang B. Size-dependent vibration of functionally graded rotating nanobeams with different boundary conditions based on nonlocal elasticity theory. J Mech Eng Sci. 2021;236:2756–74.

    Article  Google Scholar 

  23. Rubel RI, Hasan Ali Md, Abu Jafor Md, Mahmodul Alam Md. Carbon nanotubes agglomeration in reinforced composites: a review. AIMS Mater Sci. 2019;6:756–80.

    Article  Google Scholar 

2019, Volume 6, Issue 5: 756-780.

  1. Li M, Cai Y, Bao L, Fan ZH, Wang H, Vahid B. Analytical and parametric analysis of thermoelastic damping in circular cylindrical nanoshells by capturing small-scale effect on both structure and heat conduction. Archiv Civ Mech Eng. 2022. https://doi.org/10.1007/s43452-021-00330-3.

    Article  Google Scholar 

  2. Yue X-G, Sahmani S, Luo H, Safaei B. Nonlocal strain gradient-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams. Archiv Civ Mech Eng. 2023. https://doi.org/10.1007/s43452-022-00548-9.

    Article  Google Scholar 

  3. Ninh DG, Hoang VNV, Huy VL. A new structure study: vibrational analyses of FGM convex-concave shells subjected to electro-thermal-mechanical loads surrounded by Pasternak foundation. Eur J Mech A/Solids. 2021;86:104168.

    Article  MathSciNet  Google Scholar 

  4. Sahoo B, Mehar K, Sahoo B, Sharma N, Panda SK. Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings. Eng Comput. 2021. https://doi.org/10.1007/s00366-021-01514-4.

    Article  Google Scholar 

  5. Avcar M, Hadji L, Civalek Ö. Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory. Compos Struct. 2021;276: 114564.

    Article  Google Scholar 

  6. Mahmoud SR, Ghandourah E, Algarni A, Balubaid M, Tounsi A, Bourada F. On thermo-mechanical bending response of porous functionally graded sandwich plates via a simple integral plate model. Archiv Civ Mech Eng. 2022. https://doi.org/10.1007/s43452-022-00506-5.

    Article  Google Scholar 

  7. Suchocki C, Kowalewski Z. A new method for identification of cyclic plasticity model parameters. Archiv Civ Mech Eng. 2022;22:69.

    Article  Google Scholar 

  8. Rao R, Ye Z, Yang Z, Sahmani S, Safaei B. Nonlinear buckling mode transition analysis of axial–thermal–electrical-loaded FG piezoelectric nanopanels incorporating nonlocal and couple stress tensors. Archives of Civil and Mechanical Engineering. 2022;22:125.

    Article  Google Scholar 

  9. Keshtegar B, Farrokhian A, Kolahch R, Trungd N-T. Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels. Eur J Mech A Solids. 2020;82: 104010.

    Article  MathSciNet  Google Scholar 

  10. Al Furjan MSH, Farrokhian A, Keshtegar B, Kolahchi R, Trungd N-T. Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory. Eur J Mech A Solids. 2021;86: 104169.

    Article  MathSciNet  Google Scholar 

  11. Farrokhian A, Salmani-Tehrani M. Vibration and damping analysis of smart sandwich nanotubes using surface-visco-piezo-elasticity theory for various boundary conditions. Eng Anal Bound Elem. 2022;135:337–58.

    Article  MathSciNet  Google Scholar 

  12. Al-Furjan MSH, Xu MX, Farrokhian A, Soleimani Jafari G, Shen X, Kolahchi R. On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2030499.

    Article  Google Scholar 

  13. Mohapatra S, Sharma N, Dewangan HC, Panda SK. Flutter characteristics of multi-layered composite shell panels under supersonic flow with curvature effect. Waves Random Complex Media. 2023. https://doi.org/10.1080/17455030.2022.2083719. (in press).

    Article  Google Scholar 

  14. Tessler A, Di Sciuva M, Gherlone M. A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics. J Mech Mater Struct. 2010;5:341–67.

    Article  Google Scholar 

  15. Vinh PV, Belarbi M-O, Tounsi A. Wave propagation analysis of functionally graded nanoplates using nonlocal higher-order shear deformation theory with spatial variation of the nonlocal parameters. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2036387. (in press).

    Article  Google Scholar 

  16. Liu C, Ke L-L, Wang Y-S, Yang J, Kitipornchai S. Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Struct. 2013;106:167–74.

    Article  Google Scholar 

  17. Ramteke PM, Panda SK. Free vibrational behaviour of multi-directional porous functionally graded structures. Arab J Sci Eng. 2021;46:7741–56.

    Article  Google Scholar 

  18. Al-Furjan MSH, Fan S, Shan L, Farrokhian A, Shen X, Kolahchi R. Wave propagation analysis of micro air vehicle wings with honeycomb core covered by porous FGM and nanocomposite magnetostrictive layers. Waves Random Complex Media. 2023. https://doi.org/10.1080/17455030.2022.2164378. (in press).

    Article  Google Scholar 

  19. Zhao X, Zheng Sh, Li Z. Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams. Thin Walled Struct. 2020;151: 106754.

    Article  Google Scholar 

  20. Al-Furjan MSH, Yin C, Shen X, Kolahchi R, Sharif Zarei M, Hajmohammad MH. Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrat. Mech Syst Signal Process. 2022;178: 109269.

    Article  Google Scholar 

  21. Naderi A, Fakher M, Hosseini-Hashemi Sh. On the local/nonlocal piezoelectric nanobeams: vibration, buckling, and energy harvesting. Mech Syst Signal Process. 2021;151: 107432.

    Article  Google Scholar 

  22. Hoang VNV, Ha NH, Ninh DG. Dynamical and chaotic responses of porous nanocomposite non-rectangular plates with single-various-edge. AIAA J. 2021. https://doi.org/10.2514/1.J060999.

    Article  Google Scholar 

  23. Motezaker M, Kolahchi R, Rajak DK, Mahmoud SR. Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load. Polym Compos. 2021;42:4073–81.

    Article  CAS  Google Scholar 

  24. Keshtegar B, Motezaker M, Kolahchi R, Trung NT. Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping. Thin Walled Struct. 2020;154: 106820.

    Article  Google Scholar 

Download references

Acknowledgements

Al-Furjan thanks the National Natural Science Foundation of China (11872207), the Open Foundation of the State Key Laboratory of Silicon Materials (SKL2020-7), the Foundation of State Key Laboratory of Mechanics and Control of Mechanical Structures (MCMS-I-0520G01), and the National Key Research and Development Program of China (2019YFA0708904) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. H. Al-Furjan.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$ m_{11} = - \frac{{d_{31} }}{{a_{33} }}, $$
(96)
$$ m_{12} = - \frac{{d_{31} }}{{a_{33} }}, $$
(97)
$$ \begin{gathered} m_{13} = - \frac{1}{{c_{11}^{{\text{t}}} \left( {a_{33} k + 1} \right)c_{11}^{{\text{b}}} c_{11}^{{\text{c}}} a_{33} }}\left( {\left( {\frac{{d_{31} c_{11}^{{\text{c}}} \left( {G_{x} - c_{11}^{{\text{t}}} } \right)h_{{\text{t}}} }}{2} + } \right.} \right.\left( {\left( {\left( { - k\left( {z + h} \right)a_{33} - h - \frac{{h_{{\text{c}}} }}{2}} \right)d_{31} - a_{33} f_{31} k - f_{31} } \right)} \right.c_{11}^{{\text{t}}} \hfill \\ + \left. {\left. {\left( {\left( {k\left( {h - 2h_{{\text{c}}} + z} \right)a_{33} + h - 2h_{{\text{c}}} + \frac{{h_{{\text{c}}} }}{2}} \right)d_{31} + f_{31} \left( {a_{33} k + 1} \right)} \right)G_{x} } \right)c_{11}^{{\text{c}}} + 2d_{31} G_{x} c_{11}^{t} \left( {h_{{\text{c}}} - h_{{\text{b}}} } \right)\left( {a_{33} k + 1} \right)} \right)c_{11}^{{\text{b}}} \hfill \\ + \left. {2d_{31} G_{x} h_{{\text{b}}} c_{11}^{{\text{t}}} c_{11}^{{\text{c}}} \left( {a_{33} k + 1} \right)} \right) \hfill \\ \end{gathered} $$
(98)
$$ \begin{gathered} m_{14} = - \frac{1}{{c_{{_{22} }}^{{\text{t}}} \left( {a_{33} k + 1} \right)c_{22}^{{\text{b}}} c_{22}^{{\text{c}}} a_{33} }}\left( {\left( {\frac{{d_{31} c_{22}^{{\text{c}}} \left( {G_{x} - c_{22}^{{\text{t}}} } \right)h_{t} }}{2} + } \right.} \right.\left( {\left( {\left( { - k\left( {z + h} \right)a_{33} - h - \frac{{h_{{\text{c}}} }}{2}} \right)d_{31} - a_{33} f_{31} k - f_{31} } \right)} \right.c_{22}^{{\text{t}}} \hfill \\ + \left. {\left. {\left( {k\left( {\left( {z + h} \right)G_{x} - 2G_{y} h_{{\text{c}}} } \right)a_{33} + \left( {h + \frac{{h_{{\text{c}}} }}{2}} \right)G_{x} - 2G_{y} h_{{\text{c}}} } \right)d_{31} + f_{31} G_{x} \left( {a_{33} k + 1} \right)} \right)c_{22}^{{\text{c}}} + 2d_{31} G_{x} c_{22}^{{\text{t}}} \left( {h_{{\text{c}}} - h_{{\text{b}}} } \right)\left( {a_{33} k + 1} \right)} \right)c_{22}^{{\text{b}}} \hfill \\ + \left. {2d_{31} G_{y} h_{{\text{b}}} c_{22}^{{\text{t}}} c_{22}^{{\text{c}}} \left( {a_{33} k + 1} \right)} \right) \hfill \\ \end{gathered} $$
(99)
$$ m_{15} = - \frac{{\left( {\frac{{h{}_{{\text{t}}}d_{31} }}{2} + \left( {\frac{{h{}_{{\text{c}}}}}{2} + a_{33} k\,z} \right)d_{31} + f_{31} \left( {a_{33} k + 1} \right)} \right)}}{{\left( {a_{33} k + 1} \right)a_{33} }}, $$
(100)
$$ m_{16} = - \frac{{\left( {\frac{{h_{{\text{t}}}d_{31} }}{2} + \left( {\frac{{h_{{\text{c}}}}}{2} + a_{33} k\,z} \right)d_{31} + f_{31} \left( {a_{33} k + 1} \right)} \right)}}{{\left( {a_{33} k + 1} \right)a_{33} }}, $$
(101)
$$ m_{17} = - \frac{{v_{0} }}{{h_{{\text{t}}} a_{33} }}, $$
(102)

Appendix 2

$$ \begin{gathered} L_{11} = \left( {\frac{{A_{11}^{c} m^{2} \pi^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)b}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{2} }} + \zeta k^{2} \left( {\frac{{D_{11x} m^{4} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)b}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} }} + \frac{{A_{11}^{b} m^{4} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)b}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} }}} \right.} \right. \hfill \\ + \frac{{A_{11}^{c} m^{4} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)b}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} }} + D_{11x} \left( { - \frac{{3m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} }}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b}}} \right. - \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)fc^{2} \sin \left( {\frac{c\pi y}{b}} \right)}}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{3} b}} \hfill \\ + \left. {\frac{{m^{4} \pi^{6} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{6} b}} + \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{2} }}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{2} b}}} \right) + A_{11}^{b} \left( { - \frac{{3m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} }}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b}}} \right. \hfill \\ - \left. {\frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)fc^{2} \sin \left( {\frac{c\pi y}{b}} \right)}}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{3} b}} + \frac{{m^{4} \pi^{6} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{6} b}} + \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{2} }}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{2} b}}} \right) \hfill \\ + A_{11}^{c} \left( { - \frac{{3m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} }}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b}}} \right. - \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)fc^{2} \sin \left( {\frac{c\pi y}{b}} \right)}}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{3} b}} \hfill \\ + \frac{{m^{4} \pi^{6} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{6} b}} + \left. {\left. {\frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{2} }}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{2} b}}} \right)} \right) \hfill \\ + \zeta k^{2} \left( {A_{66}^{b} \left( { - \frac{{18m^{2} \pi^{6} x^{2} f^{4} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{6} b^{3} }}} \right.} \right. + \frac{{m^{4} \pi^{8} x^{4} f^{4} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{8} b^{3} }} \hfill \\ \end{gathered} $$
$$ \begin{gathered} \frac{{3m^{2} \pi^{6} x^{2} f^{2} c^{4} \sin \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b^{3} }} - \frac{{18m^{2} \pi^{6} x^{2} f^{3} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)\sin \left( {\frac{c\pi y}{b}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{5} b^{3} }} + \frac{{2m^{2} \pi^{6} x^{2} f^{2} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b^{3} }} \hfill \\ + \left. {\frac{{3m^{2} \pi^{6} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{2} }}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b^{3} }} + \frac{{\left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{4} \pi^{4} }}{{2b^{3} }}} \right) + D_{11xy} \left( { - \frac{{18m^{2} \pi^{6} x^{2} f^{4} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{6} b^{3} }}} \right. + \hfill \\ \frac{{m^{4} \pi^{8} x^{4} f^{4} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{8} b^{3} }} - \frac{{3m^{2} \pi^{6} x^{2} f^{2} c^{4} \sin \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b^{3} }} - \hfill \\ \end{gathered} $$
$$ \begin{gathered} \frac{{18m^{2} \pi^{6} x^{2} f^{3} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)\sin \left( {\frac{c\pi y}{b}} \right)}}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{5} b^{3} }} + \frac{{2m^{2} \pi^{6} x^{2} f^{2} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b^{3} }} + \hfill \\ \left. {\frac{{3m^{2} \pi^{6} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{2} }}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b^{3} }} + \frac{{\left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{4} \pi^{4} }}{{2b^{3} }}} \right) + D_{11xy} \hfill \\ \left( { - \frac{{3m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)f^{2} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{2} }}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b}}} \right. - \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)f^{{}} c^{2} \sin \left( {\frac{c\pi y}{b}} \right)}}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{3} b}} + \hfill \\ \left. {\frac{{m^{4} \pi^{6} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{6} b}} + \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{2} }}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{2} b}}} \right) + A_{66}^{c} \left( { - \frac{{3m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)f^{2} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{2} }}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b}}} \right. \hfill \\ \left. { - \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)f^{{}} c^{2} \sin \left( {\frac{c\pi y}{b}} \right)}}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{3} b}} + \frac{{m^{4} \pi^{6} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{6} b}} + \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{2} }}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{2} b}}} \right) + A_{11}^{b} \hfill \\ \hfill \\ \end{gathered} $$
$$ \begin{gathered} \left( { - \frac{{3m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)f^{2} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{2} }}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b}}} \right. - \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)f^{{}} c^{2} \sin \left( {\frac{c\pi y}{b}} \right)}}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{3} b}} + \frac{{m^{4} \pi^{6} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{6} b}} \hfill \\ \left. { + \frac{{m^{2} \pi^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{2} }}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{2} b}}} \right) + A_{66}^{c} \left( { - \frac{{18m^{2} \pi^{6} x^{2} f^{4} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{6} b^{3} }} + \frac{{m^{4} \pi^{8} x^{4} f^{4} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{4} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{8} b^{3} }}} \right. \hfill \\ - \frac{{3m^{2} \pi^{6} x^{2} f^{2} c^{4} \sin \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b^{3} }} - \frac{{18m^{2} \pi^{6} x^{2} f^{3} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)\sin \left( {\frac{c\pi y}{b}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{5} b^{3} }} \hfill \\ + \left. {\left. {\frac{{2m^{2} \pi^{6} x^{2} f^{2} c^{4} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b^{3} }} + \frac{{3m^{2} \pi^{6} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{2} }}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b^{3} }} + \frac{{\left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{4} \pi^{4} }}{{2b^{3} }}} \right)} \right) \hfill \\ + \frac{{D_{15x} m^{2} \pi^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)b}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{2} }} + \frac{{Q_{11} m^{2} \pi^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)b}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{2} }} - A_{66}^{b} \left( { - \frac{{m^{2} \pi^{4} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b}}} \right. \hfill \\ - \left. {\frac{{\left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{4} \pi^{2} }}{2b}} \right) - A_{66}^{c} \left( { - \frac{{m^{2} \pi^{4} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b}} - \frac{{\left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{4} \pi^{2} }}{2b}} \right) - D_{11xy} \hfill \\ \left( { - \frac{{m^{2} \pi^{4} x^{2} f^{2} c^{2} \cos \left( {\frac{c\pi y}{b}} \right)^{2} \left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)}}{{2\left( {a + f\sin \left( {\frac{c\pi y}{b}} \right)} \right)^{4} b}} - \frac{{\left( {\frac{a}{2} + \frac{{f\sin \left( {\frac{c\pi y}{b}} \right)}}{2}} \right)n^{4} \pi^{2} }}{2b}} \right) \hfill \\ \end{gathered} $$

where

$$ A_{11}^{{\text{c}}} = \left( {1 + g\frac{\partial }{\partial t}} \right)\int\limits_{{ - h_{{\text{c}}} /2}}^{{h_{{\text{c}}} /2}} {c_{11}^{{\text{c}}} {\text{d}}z} $$
(103)
$$ A_{11}^{{\text{b}}} = \left( {1 + g\frac{\partial }{\partial t}} \right)\int\limits_{{ - h_{{\text{c}}} /2 - h_{{\text{b}}} }}^{{ - h_{{\text{c}}} /2}} {c_{11}^{{\text{b}}} {\text{d}}z} $$
(104)
$$ A_{66}^{{\text{c}}} = \left( {1 + g\frac{\partial }{\partial t}} \right)\int\limits_{{ - h_{{\text{c}}} /2}}^{{h_{{\text{c}}} /2}} {c_{66}^{{\text{c}}} {\text{d}}z} $$
(105)
$$ A_{66}^{{\text{b}}} = \left( {1 + g\frac{\partial }{\partial t}} \right)\int\limits_{{ - h_{{\text{c}}} /2 - h_{{\text{b}}} }}^{{ - h_{{\text{c}}} /2}} {c_{66}^{{\text{b}}} {\text{d}}z} $$
(106)
$$ D_{11x} = \int\limits_{{h_{c} /2}}^{{h_{{\text{c}}} /2 + h_{{\text{t}}} }} { - \left( { - \frac{{d_{31} d_{31} }}{{a_{33} }} + f_{13} \frac{\partial }{\partial z}\left( {\frac{{d_{31} }}{{a_{33} }}} \right) - c_{11}^{{\text{t}}} } \right){\text{d}}z} $$
(107)
$$ D_{11xy} = \left( {1 + g\frac{\partial }{\partial t}} \right)\int\limits_{{h_{{\text{c}}} /2}}^{{h_{{\text{c}}} /2 + h_{{\text{t}}} }} {c_{66}^{{\text{t}}} {\text{d}}z} $$
(108)

Appendix 3

$$ \sum\limits_{m = 1}^{M} {\sum\limits_{n = 1}^{N} {\left( {N_{11} \,u_{0} \left( t \right) + N_{12} \,v_{0} \left( t \right) + N_{13} \,w_{0} \left( t \right) + N_{14} \,\varphi_{0x} \left( t \right) + N_{15} \,\varphi_{0y} \left( t \right) + N_{16} \,\psi_{0x} \left( t \right) + N_{17} \,\psi_{0x} \left( t \right) + N_{18} \,\phi_{0} \left( t \right)} \right)} } = 0 $$
(109)
$$ \sum\limits_{m = 1}^{M} {\sum\limits_{n = 1}^{N} {\left( {N_{21} \,u_{0} \left( t \right) + N_{22} \,v_{0} \left( t \right) + N_{23} \,w_{0} \left( t \right) + N_{24} \,\varphi_{0x} \left( t \right) + N_{25} \,\varphi_{0y} \left( t \right) + N_{26} \,\psi_{0x} \left( t \right) + N_{27} \,\psi_{0x} \left( t \right) + N_{28} \,\phi_{0} \left( t \right)} \right)} } = 0 $$
(110)
$$ \sum\limits_{m = 1}^{M} {\sum\limits_{n = 1}^{N} {\left( {N_{31} \,u_{0} \left( t \right) + N_{32} \,v_{0} \left( t \right) + N_{33} \,w_{0} \left( t \right) + N_{34} \,\varphi_{0x} \left( t \right) + N_{35} \,\varphi_{0y} \left( t \right) + N_{36} \,\psi_{0x} \left( t \right) + N_{37} \,\psi_{0x} \left( t \right) + N_{38} \,\phi_{0} \left( t \right)} \right)} } = 0 $$
(111)
$$ \sum\limits_{m = 1}^{M} {\sum\limits_{n = 1}^{N} {\left( {N_{41} \,u_{0} \left( t \right) + N_{42} \,v_{0} \left( t \right) + N_{43} \,w_{0} \left( t \right) + N_{44} \,\varphi_{0x} \left( t \right) + N_{45} \,\varphi_{0y} \left( t \right) + N_{46} \,\psi_{0x} \left( t \right) + N_{47} \,\psi_{0x} \left( t \right) + N_{48} \,\phi_{0} \left( t \right)} \right)} } = 0 $$
(112)
$$ \sum\limits_{m = 1}^{M} {\sum\limits_{n = 1}^{N} {\left( {N_{51} \,u_{0} \left( t \right) + N_{52} \,v_{0} \left( t \right) + N_{53} \,w_{0} \left( t \right) + N_{54} \,\varphi_{0x} \left( t \right) + N_{55} \,\varphi_{0y} \left( t \right) + N_{56} \,\psi_{0x} \left( t \right) + N_{57} \,\psi_{0x} \left( t \right) + N_{58} \,\phi_{0} \left( t \right)} \right)} } = 0 $$
(113)
$$ \sum\limits_{m = 1}^{M} {\sum\limits_{n = 1}^{N} {\left( {N_{61} \,u_{0} \left( t \right) + N_{62} \,v_{0} \left( t \right) + N_{63} \,w_{0} \left( t \right) + N_{64} \,\varphi_{0x} \left( t \right) + N_{65} \,\varphi_{0y} \left( t \right) + N_{66} \,\psi_{0x} \left( t \right) + N_{67} \,\psi_{0x} \left( t \right) + N_{68} \,\phi_{0} \left( t \right)} \right)} } = 0 $$
(114)
$$ \sum\limits_{m = 1}^{M} {\sum\limits_{n = 1}^{N} {\left( {N_{71} \,u_{0} \left( t \right) + N_{72} \,v_{0} \left( t \right) + N_{73} \,w_{0} \left( t \right) + N_{74} \,\varphi_{0x} \left( t \right) + N_{75} \,\varphi_{0y} \left( t \right) + N_{76} \,\psi_{0x} \left( t \right) + N_{77} \,\psi_{0x} \left( t \right) + N_{78} \,\phi_{0} \left( t \right)} \right)} } = 0 $$
(C115)
$$ \sum\limits_{m = 1}^{M} {\sum\limits_{n = 1}^{N} {\left( {N_{81} \,u_{0} \left( t \right) + N_{82} \,v_{0} \left( t \right) + N_{83} \,w_{0} \left( t \right) + N_{84} \,\varphi_{0x} \left( t \right) + N_{85} \,\varphi_{0y} \left( t \right) + N_{86} \,\psi_{0x} \left( t \right) + N_{87} \,\psi_{0x} \left( t \right) + N_{88} \,\phi_{0} \left( t \right)} \right)} } = 0 $$
(116)

in which \(N_{ij}\) are calculated as:

$$ \left( {N_{11} ,N_{12} ,N_{13} ,N_{14} ,N_{15} ,N_{16} ,N_{17} ,N_{18} } \right) = \int\limits_{0}^{a + F\left( y \right)} {\int\limits_{0}^{b} {\left( {L_{11} ,L_{12} ,L_{13} ,L_{14} ,L_{15} ,L_{16} ,L_{17} ,L_{18} } \right)} } cos\left( {\frac{m\,\pi x}{{a + F\left( y \right)}}} \right)\sin \left( {\frac{n\,\pi y}{b}} \right), $$
(117)
$$ \left( {N_{21} ,N_{22} ,N_{23} ,N_{24} ,N_{25} ,N_{26} ,N_{27} ,N_{28} } \right) = \int\limits_{0}^{a + F\left( y \right)} {\int\limits_{0}^{b} {\left( {L_{21} ,L_{22} ,L_{23} ,L_{24} ,L_{25} ,L_{26} ,L_{27} ,L_{28} } \right)} } \sin \left( {\frac{m\,\pi x}{{a + F\left( y \right)}}} \right)\cos \left( {\frac{n\,\pi y}{b}} \right), $$
(118)
$$ \left( {N_{31} ,N_{32} ,N_{33} ,N_{34} ,N_{35} ,N_{36} ,N_{37} ,N_{38} } \right) = \int\limits_{0}^{a + F\left( y \right)} {\int\limits_{0}^{b} {\left( {L_{31} ,L_{32} ,L_{33} ,L_{34} ,L_{35} ,L_{36} ,L_{37} ,L_{38} } \right)} } \sin \left( {\frac{m\,\pi x}{{a + F\left( y \right)}}} \right)\sin \left( {\frac{n\,\pi y}{b}} \right), $$
(119)
$$ \left( {N_{41} ,N_{42} ,N_{43} ,N_{44} ,N_{45} ,N_{46} ,N_{47} ,N_{48} } \right) = \int\limits_{0}^{a + F\left( y \right)} {\int\limits_{0}^{b} {\left( {L_{41} ,L_{42} ,L_{43} ,L_{44} ,L_{45} ,L_{46} ,L_{47} ,L_{48} } \right)} } \cos \left( {\frac{m\,\pi x}{{a + F\left( y \right)}}} \right)\sin \left( {\frac{n\,\pi y}{b}} \right), $$
(120)
$$ \left( {N_{51} ,N_{52} ,N_{53} ,N_{54} ,N_{55} ,N_{56} ,N_{57} ,N_{58} } \right) = \int\limits_{0}^{a + F\left( y \right)} {\int\limits_{0}^{b} {\left( {L_{51} ,L_{52} ,L_{53} ,L_{54} ,L_{55} ,L_{56} ,L_{57} ,L_{58} } \right)} } \sin \left( {\frac{m\,\pi x}{{a + F\left( y \right)}}} \right)\cos \left( {\frac{n\,\pi y}{b}} \right), $$
(121)
$$ \left( {N_{61} ,N_{62} ,N_{63} ,N_{64} ,N_{65} ,N_{66} ,N_{67} ,N_{68} } \right) = \int\limits_{0}^{a + F\left( y \right)} {\int\limits_{0}^{b} {\left( {L_{61} ,L_{62} ,L_{63} ,L_{64} ,L_{65} ,L_{66} ,L_{67} ,L_{68} } \right)} } cos\left( {\frac{m\,\pi x}{{a + F\left( y \right)}}} \right)\sin \left( {\frac{n\,\pi y}{b}} \right), $$
(122)
$$ \left( {N_{71} ,N_{72} ,N_{73} ,N_{74} ,N_{75} ,N_{76} ,N_{77} ,N_{78} } \right) = \int\limits_{0}^{a + F\left( y \right)} {\int\limits_{0}^{b} {\left( {L_{71} ,L_{72} ,L_{73} ,L_{74} ,L_{75} ,L_{76} ,L_{77} ,L_{78} } \right)} } sin\left( {\frac{m\,\pi x}{{a + F\left( y \right)}}} \right)\cos \left( {\frac{n\,\pi y}{b}} \right), $$
(123)
$$ \left( {N_{81} ,N_{82} ,N_{83} ,N_{84} ,N_{85} ,N_{86} ,N_{87} ,N_{88} } \right) = \int\limits_{0}^{a + F\left( y \right)} {\int\limits_{0}^{b} {\left( {L_{81} ,L_{82} ,L_{83} ,L_{84} ,L_{85} ,L_{86} ,L_{87} ,L_{88} } \right)} } sin\left( {\frac{m\,\pi x}{{a + F\left( y \right)}}} \right)sin\left( {\frac{n\,\pi y}{b}} \right), $$
(124)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, C., Shan, L., Al-Furjan, M.S.H. et al. Energy absorption, free and forced vibrations of flexoelectric nanocomposite magnetostrictive sandwich nanoplates with single sinusoidal edge on the frictional torsional viscoelastic medium. Archiv.Civ.Mech.Eng 23, 223 (2023). https://doi.org/10.1007/s43452-023-00756-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00756-x

Keywords

Navigation