Skip to main content

Advertisement

Log in

Structure–property relationships and corrosion behavior of laser-welded X-70/UNS S32750 dissimilar joint

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This research aims to study the microstructure characteristics, mechanical properties, and corrosion behaviors of the dissimilar autogenous laser beam welded joint of pipeline steel (X-70) and super duplex stainless steel (sDSS 2507). Pipelines for the transmission of oil and gas and risers for offshore oil and gas drilling require this dissimilar joint. A dissimilar joint must maintain its properties and be defect-free under such challenging operating conditions. The microstructure of the interface, weld zone and heat-affected zone (HAZ) were all investigated thoroughly using optical microscopy (OM) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS). This dissimilar joint had significant microstructure anomalies in the weld and interfaces. Microstructure inhomogeneity’s effect on welded joint mechanical properties, including microhardness, tensile and impact strength, was also studied. The linear potentiodynamic polarisation test in neutral 3.5 wt.% NaCl solution was used to study this weldment’s corrosion behavior. The corroded surfaces were examined using an OM and SEM for the surface morphology investigation of corroded specimens. The macro-optical investigation has revealed full penetrations in the weld without any inclusions or porosities. The interface between the sDSS 2507 weld zone and the X-70 coarse grain heat-affected zone (CGHAZ) indicated a peak hardness of 418 Hv0.5. With an average of 345 Hv0.5, the WZ’s hardness variation was reported to be in the 298–420 Hv0.5 range. The hardness of the X-70/sDSS 2507 weld interface was assessed to be greater than that of the other region of weldments. An untempered martensitic region in WM and the CGHAZ of X-70, and the presence of M-A components are credited with the increase in hardness. The welded joint achieved reasonably excellent strength and ductility and met the marine and offshore standards requirements. The base metals and weldment for X-70 and sDSS 2507 have respective ultimate tensile strengths (UTS) of 610 ± 6 MPa, 995 ± 8 MPa, and 675 ± 10 MPa. The tensile findings revealed that the fracture location for weldment was evident in the X-70 base metal, ensuring that the weld metal was of adequate strength for the laser-weld joints. It was observed that the weldment’s WM had the lowest impact strength. The Charpy impact toughness of the weld metal, however, was higher than both the ASME standard (> 41 J) and the EN 1599:1997 standards (> 47 J). The sDSS 2507 BM (310 ± 4 J) clearly outperforms the weld zones (185 ± 3 J) and X-70 base metal (295 ± 2 J) in terms of impact strength. The electrochemical corrosion test shows the corrosion potential, and the weld zone's corrosion rate is between sDSS 25,070 (− 260 ± 1.3 mV, 0187 ± 0.002 mm/year) and X-70 base metal (− 454 ± 1.8 mV, 0.321 ± 0.017 mm/year). Additionally, the surface morphologies and the electrochemical measurements matched significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

LBW:

Laser beam welding

DWJ:

Dissimilar weld joint

HAZ:

Heat-affected zone

CGHAZ:

Coarse grain heat-affected zone

FGHAZ:

Fine-grain heat-affected zone

ICHAZ:

Intercritical grain heat-affected zone

Creq :

Chromium equivalent

Nieq :

Nickel equivalent

γ:

Austenite

δ:

Ferrite

wt.%:

Weight percentage

lpm:

Liter per minute

WCEDM:

Wire-cut electrical discharge machining

ASTM:

American Society for Testing and Materials

AISI:

American Iron and Steel Institute

API:

American Petroleum Institute

Ac1 and Ac3 :

Lower and upper critical temperature

γ2 :

Secondary austenite

Ecorr :

Corrosion potential

ICorr :

Corrosion current density

References

  1. Lippold JC. Welding metallurgy and weldability. Hoboken, NJ: John Wiley & Sons Inc; 2014. https://doi.org/10.1002/9781118960332.

    Book  Google Scholar 

  2. Andersson J. Welding metallurgy and weldability of superalloys. Metals (Basel). 2020. https://doi.org/10.3390/met10010143.

    Article  Google Scholar 

  3. Lippold JC, Kotecki DJ. Welding metallurgy and weldability of stainless steels. Wiley; 2005.

    Google Scholar 

  4. Khan WN, Chhibber R. Effect of filler metal on solidification, microstructure and mechanical properties of dissimilar super duplex/pipeline steel GTA weld. Mater Sci Eng. 2021;803:140476. https://doi.org/10.1016/j.msea.2020.140476.

    Article  CAS  Google Scholar 

  5. Khan WN, Chhibber R. Experimental investigation on dissimilar weld between super duplex stainless steel 2507 and API X70 pipeline steel. Proc Inst Mech Eng Part L J Mater Design Appl. 2021. https://doi.org/10.1177/14644207211013056.

    Article  Google Scholar 

  6. Khan WN, Mahajan S, Chhibber R. Investigations on reformed austenite in the microstructure of dissimilar super duplex/pipeline steel weld. Mater Lett. 2021;285:129109. https://doi.org/10.1016/j.matlet.2020.129109.

    Article  CAS  Google Scholar 

  7. Shamanian M, Kangazian J, Szpunar JA. Insights into the microstructure evolution and crystallographic texture of API X-65 steel/UNS S32750 stainless steel dissimilar welds by EBSD analysis. Weld World. 2021;65:973–86. https://doi.org/10.1007/S40194-020-01062-3/TABLES/3.

    Article  CAS  Google Scholar 

  8. Rahmani M, Eghlimi A, Shamanian M. Evaluation of microstructure and mechanical properties in dissimilar austenitic/super duplex stainless steel joint. J Mater Eng Perform. 2014;23:3745–53. https://doi.org/10.1007/s11665-014-1136-z.

    Article  CAS  Google Scholar 

  9. Graudenz M, Baur M. Applications of laser welding in the automotive industry. In: Handbook of laser welding technologies. Elsevier; 2013. p. 555–74.

    Chapter  Google Scholar 

  10. Yang J, Oliveira JP, Li Y, Tan C, Gao C, Zhao Y, Yu Z. Laser techniques for dissimilar joining of aluminum alloys to steels: a critical review. J Mater Process Technol. 2022;301:117443. https://doi.org/10.1016/j.jmatprotec.2021.117443.

    Article  CAS  Google Scholar 

  11. Ahmad GN, Raza MS, Singh NK, Muvvala G. Investigating the effect of process parameters on weld pool thermal history and mechanical properties of laser welded Inconel 625 and Duplex stainless steel 2205 dissimilar welds. Optik (Stuttg). 2021;248:168134. https://doi.org/10.1016/J.IJLEO.2021.168134.

    Article  ADS  CAS  Google Scholar 

  12. Köse C. Characterization of weld seam surface and corrosion behavior of laser-beam-welded AISI 2205 duplex stainless steel in simulated body fluid. J Mater Sci. 2020;55:17232–54. https://doi.org/10.1007/S10853-020-05326-7.

    Article  ADS  Google Scholar 

  13. Wang G, Wang J, Yin L, Hu H, Yao Z. Quantitative correlation between thermal cycling and the microstructures of X100 pipeline steel laser-welded joints. Materials. 2020;13:121. https://doi.org/10.3390/MA13010121.

    Article  ADS  CAS  Google Scholar 

  14. Yang H, Chen J, Huda N, Gerlich AP. Effect of beam wobbling on microstructure and hardness during laser welding of X70 pipeline steel. Sci Technol Weld Join. 2022;27:326–38. https://doi.org/10.1080/13621718.2022.2053395.

    Article  CAS  Google Scholar 

  15. Maurya AK, Pandey C, Chhibber R. Effect of filler metal composition on microstructural and mechanical characterization of dissimilar welded joint of nitronic steel and super duplex stainless steel. Archiv Civil Mech Eng. 2022;22:1–28. https://doi.org/10.1007/S43452-022-00413-9.

    Article  Google Scholar 

  16. Maurya AK, Pandey C, Chhibber R. Influence of heat input on weld integrity of weldments of two dissimilar steels. Mater Manuf Processes. 2022. https://doi.org/10.1080/10426914.2022.2075889.

    Article  Google Scholar 

  17. Maurya AK, Pandey C, Chhibber R. Dissimilar welding of duplex stainless steel with Ni alloys: a review. Int J Press Vessels Piping. 2021. https://doi.org/10.1016/j.ijpvp.2021.104439.

    Article  Google Scholar 

  18. DevendranathRamkumar K, Kumar PSG, Sai Radhakrishna V, Kothari K, Sridhar R, Arivazhagan N, Kuppan P. Studies on microstructure and mechanical properties of keyhole mode Nd:YAG laser welded Inconel 625 and duplex stainless steel, SAF 2205. J Mater Res. 2015;30:3288–98. https://doi.org/10.1557/JMR.2015.276.

    Article  ADS  CAS  Google Scholar 

  19. Sirohi S, Gupta A, Pandey C, Vidyarthy RS, Guguloth K, Natu H. Investigation of the microstructure and mechanical properties of the laser welded joint of P22 and P91 steel. Opt Laser Technol. 2022;147:107610. https://doi.org/10.1016/J.OPTLASTEC.2021.107610.

    Article  CAS  Google Scholar 

  20. Köse C, Topal C. Effect of heat input and post-weld heat treatment on surface, texture, microstructure, and mechanical properties of dissimilar laser beam welded AISI 2507 super duplex to AISI 904L super austenitic stainless steels. J Manuf Process. 2022;73:861–94. https://doi.org/10.1016/J.JMAPRO.2021.11.040.

    Article  Google Scholar 

  21. das Nevesa MDM, Lottob A, Berrettac JR, de Rossid W, Júniord NDV. Microstructure development in Nd:YAG laser welding of AISI 304 and Inconel 600. Weld Int. 2010;24:104–13. https://doi.org/10.1080/09507110903568877.

    Article  Google Scholar 

  22. Liu X, Pang M, Zhang Z, Ning W, Zheng CY. Characteristics of deep penetration laser welding of dissimilar metal Ni-based cast superalloy K418 and alloy steel 42CrMo. Opt Lasers Eng. 2007;45:929–34.

    Article  Google Scholar 

  23. Berretta JR, de Rossi W, Das Neves MDM, Alves de Almeida I, Vieira ND Jr. Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels. Opt Lasers Eng. 2007;45:960–6. https://doi.org/10.1016/J.OPTLASENG.2007.02.001.

    Article  Google Scholar 

  24. Baghjari SH, AkbariMousavi SAA. Experimental investigation on dissimilar pulsed Nd:YAG laser welding of AISI 420 stainless steel to Kovar alloy. Mater Des. 2014;57:128–34. https://doi.org/10.1016/J.MATDES.2013.12.050.

    Article  CAS  Google Scholar 

  25. Devendranath RK, Sidharth D, Phani PP, Rajendran R, Narayanan GMKS. Microstructure and properties of inconel 718 and AISI 416 laser welded joints. J Mater Process Technol. 2019;266:52–62. https://doi.org/10.1016/J.JMATPROTEC.2018.10.039.

    Article  Google Scholar 

  26. Pańcikiewicz K, Świerczyńska A, Hućko P, Tumidajewicz M. Laser dissimilar welding of AISI 430F and AISI 304 stainless steels. Materials. 2020;13:1–15. https://doi.org/10.3390/MA13204540.

    Article  Google Scholar 

  27. Dak G, Sirohi S, Pandey C. Study on microstructure and mechanical behavior relationship for laser-welded dissimilar joint of P92 martensitic and 304L austenitic steel. Int J Press Vessel Piping. 2022;196:104629. https://doi.org/10.1016/J.IJPVP.2022.104629.

    Article  CAS  Google Scholar 

  28. Kumar A, Pandey C. Autogenous laser-welded dissimilar joint of ferritic/martensitic P92 steel and Inconel 617 alloy: mechanism, microstructure, and mechanical properties. Archiv Civil Mech Eng. 2022. https://doi.org/10.1007/S43452-021-00365-6.

    Article  Google Scholar 

  29. Mendoza BI, Maldonado ZC, Albiter HA, Robles PE. Dissimilar welding of superduplex stainless steel/HSLA steel for offshore applications joined by GTAW. Engineering. 2010;02:520–8. https://doi.org/10.4236/eng.2010.27069.

    Article  CAS  Google Scholar 

  30. Wang J, Lu MX, Zhang L, Chang W, Xu LN, Hu LH. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel. Int J Miner Metall Mater. 2012;2012(19):518–24. https://doi.org/10.1007/S12613-012-0589-Z.

    Article  Google Scholar 

  31. Wang X, Zhang L, Kuang X, Lu M. Microstructure and galvanic corrosion of dissimilar weldment between duplex stainless steel UNS 31803 and X80 Steel. Proc Int Conf Offshore Mech Arctic Eng OMAE. 2010;6:295–9. https://doi.org/10.1115/OMAE2009-80203.

    Article  Google Scholar 

  32. Sadeghian M, Shamanian M, Shafyei A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel. Mater Des. 2014;60:678–84. https://doi.org/10.1016/j.matdes.2014.03.057.

    Article  CAS  Google Scholar 

  33. Moustafa EB, Elsheikh A. Predicting characteristics of dissimilar laser welded polymeric joints using a multi-layer perceptrons model coupled with Archimedes optimizer. Polymers (Basel). 2023;15:233. https://doi.org/10.3390/polym15010233.

    Article  CAS  PubMed  Google Scholar 

  34. Elsheikh AH, Shehabeldeen TA, Zhou J, Showaib E, AbdElaziz M. Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer. J Intell Manuf. 2021;32:1377–88. https://doi.org/10.1007/S10845-020-01617-7/TABLES/4.

    Article  Google Scholar 

  35. Zhou H, Wu C, Tang D, Shi X, Xue Y, Huang Q, Zhang J, Elsheikh AH, Ibrahim AMM. Tribological performance of gradient ag-multilayer graphene/TC4 alloy self-lubricating composites prepared by laser additive manufacturing. Tribol Transac. 2021;64:819–29. https://doi.org/10.1080/10402004.2021.1922789.

    Article  CAS  Google Scholar 

  36. Elsheikh AH, Deng W, Showaib EA. Improving laser cutting quality of polymethylmethacrylate sheet: experimental investigation and optimization. J Mater Res Technol. 2020;9:1325–39. https://doi.org/10.1016/j.jmrt.2019.11.059.

    Article  CAS  Google Scholar 

  37. Elsheikh AH, Muthuramalingam T, AbdElaziz M, Ibrahim AMM, Showaib EA. Minimization of fume emissions in laser cutting of polyvinyl chloride sheets using genetic algorithm. Int J Environ Sci Technol. 2022;19:6331–44. https://doi.org/10.1007/S13762-021-03566-X/FIGURES/10.

    Article  CAS  Google Scholar 

  38. Payares-Asprino C. Prediction of mechanical properties as a function of welding variables in robotic gas metal arc welding of duplex stainless steels SAF 2205 welds through artificial neural networks. Adv Mater Sci. 2021;21:75–90. https://doi.org/10.2478/adms-2021-0019.

    Article  CAS  Google Scholar 

  39. Astm G. G 61–86: standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron nickel cobalt-base alloys. Ann Book ASTM Stand. 2001;3:223–7.

    Google Scholar 

  40. Cotrim-Ferreira FA, Quaglio CL, Peralta RPV, Carvalho PEG, Siqueira DF. ASTM E3–01: standard guide for preparation of metallographic specimens. Braz Oral Res SciELO Brasil. 2010;24:438–42.

    Article  Google Scholar 

  41. Practice S. Standard practice for microetching metals and alloys. ASTM E-407. 2016;07:1–22. https://doi.org/10.1520/E0407-07R15E01.2.

    Article  Google Scholar 

  42. ASTM E8. ASTM E8/E8M standard test methods for tension testing of metallic materials 1. Ann Book ASTM Stand. 2010;4:1–27. https://doi.org/10.1520/E0008.

    Article  Google Scholar 

  43. ASTM American Society for Testing and Materials. ASTM E 23–12c, Standard test methods for notched bar impact testing of metallic materials. ASTM Int. 2012. https://doi.org/10.1520/E0023-18.

    Article  Google Scholar 

  44. ASTM E92–17. ASTM 2017 standard standard test methods for Vickers hardness and knoop hardness of metallic materials. West Conshohocken (PA): ASTM International; 2017. p. 1–27.

    Google Scholar 

  45. Maurya AK, Chhibber R, Pandey C. Heat input effect on dissimilar super duplex stainless steel (UNS S32750) and nitronic steel (N 50) gas tungsten arc weld: mechanism microstructure, and mechanical properties. J Mater Eng Perform. 2022. https://doi.org/10.1007/s11665-022-07471-3.

    Article  Google Scholar 

  46. Sieurin H, Sandström R. Austenite reformation in the heat-affected zone of duplex stainless steel 2205. Mater Sci Eng A. 2006;418:250–6. https://doi.org/10.1016/J.MSEA.2005.11.025.

    Article  Google Scholar 

  47. Ahmad GN, Raza MS, Singh NK, Kumar H. Experimental investigation on Ytterbium fiber laser butt welding of Inconel 625 and duplex stainless steel 2205 thin sheets. Optics Laser Technol. 2020;126:106117. https://doi.org/10.1016/j.optlastec.2020.106117.

    Article  CAS  Google Scholar 

  48. Ali A, Bhadeshia HKDH. Microstructure of high strength steel refined with intragranularly nucleated Widmanstätten ferrite. Mater Sci Technol. 1991;7:895–903. https://doi.org/10.1179/MST.1991.7.10.895.

    Article  ADS  CAS  Google Scholar 

  49. Bhadeshia H, Svensson L. Modelling the evolution of microstructure in steel weld metal. Math Model Weld Phenomena. 1993;1:109–82.

    Google Scholar 

  50. Qi K, Li R, Wang G, Li G, Liu B, Wu M. Microstructure and corrosion properties of laser-welded SAF 2507 super duplex stainless steel joints. J Mater Eng Perform. 2019;28:287–95. https://doi.org/10.1007/S11665-018-3833-5.

    Article  CAS  Google Scholar 

  51. Ramirez AJ, Lippold JC, Brandi SD. The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels. Metall Mater Trans A Phys Metall Mater Sci. 2003;34A:1575–97. https://doi.org/10.1007/S11661-003-0304-9.

    Article  ADS  CAS  Google Scholar 

  52. Sun Z, Kuo M, Annergren I. Effect of dual torch technique on duplex stainless steel welds. Mater Sci Eng A. 2003;356:274–82.

    Article  Google Scholar 

  53. Taban E, Kaluc E. Welding behaviour of duplex and superduplex stainless steels using laser and plasma ARC welding processes. Weld World. 2011;55:48–57. https://doi.org/10.1007/BF03321307.

    Article  CAS  Google Scholar 

  54. Brayshaw WJ, Roy MJ, Sun T, Akrivos V, Sherry AH. Iterative mesh-based hardness mapping. Sci Technol Weld Join. 2016;22:404–11. https://doi.org/10.1080/13621718.2016.1251713.

    Article  CAS  Google Scholar 

  55. Bing Guo Y, Li C, Chang Liu Y, Ming Yu L, Qing Ma Z, Xi Liu C, Jun Li H. Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution. Int J Miner Metall Mater. 2015;22:604–12. https://doi.org/10.1007/S12613-015-1113-Z.

    Article  Google Scholar 

  56. Devendranath RK, Dagur AH, Kartha AA, Subodh MA, Vishnu C, Arun D, Vijay Kumar MG, Abraham WS, Chatterjee A, Abraham J, Abraham J. Microstructure, mechanical properties and biocorrosion behavior of dissimilar welds of AISI 904L and UNS S32750. J Manuf Process. 2017;30:27–40. https://doi.org/10.1016/J.JMAPRO.2017.09.001.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful of the Magod Fusion Technologies Pvt Ltd, Pune, India for providing the experimental facilities for Laser Welding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Pandey.

Ethics declarations

Conflict of interest

The author(s) have no conflict of interest.

Ethical approval

The manuscript is original and not submitted elsewhere for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, A.K., Pandey, S.M., Chhibber, R. et al. Structure–property relationships and corrosion behavior of laser-welded X-70/UNS S32750 dissimilar joint. Archiv.Civ.Mech.Eng 23, 81 (2023). https://doi.org/10.1007/s43452-023-00627-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00627-5

Keywords

Navigation