Skip to main content
Log in

Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Due to the vast usage of metal foam structures in branches of science, reinforcing them with nano-fillers makes them more convenient. Hence, in the current study, vibration characteristics of functionally graded porous nanocomposite (FGPN) annular microplates are taken into consideration. Two kinds of nano-fillers, namely Carbon nanotubes (CNTs) and Graphene nanoplatelets (GNPs), are selected as the reinforcements to analyze and compare their effect on the microstructure’s vibrational response. The mentioned nano-fillers are dispersed according to four patterns which affect various mechanical properties of the structure. Similarly, based on given functions which are called porosity distributions, pores are placed in thickness course of the microstructure. Then, its properties are determined via employing Halpin–Tsai and extended rule of mixture micromechanics models. Using the first-order shear deformation theory (FSDT), modified couple stress theory (MCST), and Hamilton’s principle for dynamic systems, governing motion equations and related boundary conditions are derived in asymmetric state, and then, they are solved, and natural frequencies and corresponding mode shapes are extracted with the help of generalized differential quadrature method (GDQM). By validating the results in simpler conditions, effects of the most important parameters are examined. It is found that GNPs are more effective in reinforcing the structure than CNTs. Also, about 15 ~ 18 percent reduction in frequencies is seen by increasing the porosity up to seventy percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request.

References

  1. Kiran MC, Kattimani SC. Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: a finite element study. Eur J Mech A/Solids. 2018;71:258–77. https://doi.org/10.1016/j.euromechsol.2018.04.006.

    Article  MathSciNet  Google Scholar 

  2. Ebrahimi F, Dabbagh A, Taheri M. Vibration analysis of porous metal foam plates rested on viscoelastic substrate. Eng Comput. 2020;37(4):3727–39. https://doi.org/10.1007/S00366-020-01031-W.

    Article  Google Scholar 

  3. Wei T, Lu J, Zhang P, Yang G, Sun C, Zhou Y, Zhuang Q, Tang Y. Metal–organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries. Chin Chem Lett. 2022. https://doi.org/10.1016/J.CCLET.2022.107947.

    Article  Google Scholar 

  4. Afshar A, Nobakhti A, Shokrgozar A, Afshar A. Simulation of the effects of pozzolanic additives and corrosion inhibitor on the corrosion of reinforced concrete by artificial neural networks. Rev Rom Mater Rom J Mater. 2019;49:535–43.

    CAS  Google Scholar 

  5. Afshar A, Shokrgozar A, Afshar A, Afshar A. Simulation of corrosion protection methods in reinforced concrete by artificial neural networks and fuzzy logic. J Electrochem Sci Eng. 2022;12:511–27. https://doi.org/10.5599/jese.1220.

    Article  CAS  Google Scholar 

  6. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.

    Article  ADS  CAS  Google Scholar 

  7. Chen Y, Long J, Xie B, Kuang Y, Chen X, Hou M, Gao J, Liu H, He Y, Wong C-P. One-step ultraviolet laser-induced fluorine-doped graphene achieving superhydrophobic properties and its application in deicing. ACS Appl Mater Interf. 2022. https://doi.org/10.1021/ACSAMI.1C18559.

    Article  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9. https://doi.org/10.1126/science.1102896.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Detournay E, Cheng AH-D. Fundamentals of poroelasticity. Anal: Des. Methods; 1993. https://doi.org/10.1016/B978-0-08-040615-2.50011-3.

    Book  Google Scholar 

  10. Bo J. The vertical vibration of an elastic circular plate on a fluid-saturated porous half space. Int J Eng Sci. 1999;37:379–93. https://doi.org/10.1016/s0020-7225(98)00073-1.

    Article  CAS  Google Scholar 

  11. Zhou K, Huang X, Tian J, Hua H. Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation. Compos Struct. 2018;204:63–79. https://doi.org/10.1016/j.compstruct.2018.07.057.

    Article  Google Scholar 

  12. Muc A, Flis J. Flutter characteristics and free vibrations of rectangular functionally graded porous plates. Compos Struct. 2021;261:113301. https://doi.org/10.1016/J.COMPSTRUCT.2020.113301.

    Article  Google Scholar 

  13. Van Vinh P, Van Chinh N, Tounsi A. Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur J Mech A/Solids. 2022;96:104743. https://doi.org/10.1016/J.EUROMECHSOL.2022.104743.

    Article  ADS  MathSciNet  Google Scholar 

  14. Tahir SI, Chikh A, Tounsi A, Al-Osta MA, Al-Dulaijan SU, Al-Zahrani MM. Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos Struct. 2021;269:114030. https://doi.org/10.1016/j.compstruct.2021.114030.

    Article  Google Scholar 

  15. Al-Osta MA, Saidi H, Tounsi A, Al-Dulaijan SU, Al-Zahrani MM, Sharif A, Tounsi A. Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model. Smart Struct Syst. 2021;28:499–513. https://doi.org/10.12989/SSS.2021.28.4.499.

    Article  Google Scholar 

  16. Xue Y, Jin G, Ma X, Chen H, Ye T, Chen M, Zhang Y. Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. Int J Mech Sci. 2019;152:346–62. https://doi.org/10.1016/J.IJMECSCI.2019.01.004.

    Article  Google Scholar 

  17. Cuong-Le T, Nguyen KD, Nguyen-Trong N, Khatir S, Nguyen-Xuan H, Abdel-Wahab M. A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA. Compos Struct. 2021;259:113216. https://doi.org/10.1016/j.compstruct.2020.113216.

    Article  CAS  Google Scholar 

  18. Bekkaye THL, Fahsi B, Bousahla AA, Bourada F, Tounsi A, Benrahou KH, Tounsi A, Al-Zahrani MM. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Comput Concr. 2020;26:450. https://doi.org/10.12989/CAC.2020.26.5.439.

    Article  Google Scholar 

  19. Bellifa H, Selim MM, Chikh A, Bousahla AA, Bourada F, Tounsi A, Benrahou KH, Al-Zahrani MM, Tounsi A. Influence of porosity on thermal buckling behavior of functionally graded beams. Smart Struct Syst. 2021;27:728. https://doi.org/10.12989/SSS.2021.27.4.719.

    Article  Google Scholar 

  20. Rezaei AS, Saidi AR. An analytical study on the free vibration of moderately thick fluid-infiltrated porous annular sector plates, JVC/Journal Vib. Control. 2018;24:4130–44. https://doi.org/10.1177/1077546317721416.

    Article  Google Scholar 

  21. Djilali N, Bousahla AA, Kaci A, Selim MM, Bourada F, Tounsi A, Tounsi A, Benrahou KH, Mahmoud SR. Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT. Steel Compos Struct. 2022;42:779–89. https://doi.org/10.12989/SCS.2022.42.6.779.

    Article  Google Scholar 

  22. Zerrouki R, Karas A, Zidour M, Bousahla AA, Tounsi A, Bourada F, Tounsi A, Benrahou KH, Mahmoud SR. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Struct Eng Mech. 2021;78:117–24. https://doi.org/10.12989/sem.2021.78.2.117.

    Article  Google Scholar 

  23. Bourada F, Bousahla AA, Tounsi A, Adda Bedia EA, Mahmoud SR, Benrahou KH, Tounsi A. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation. Comput Concr. 2020;25:485–95.

    Google Scholar 

  24. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H. Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol. 2020;26:461–73. https://doi.org/10.1007/s00542-019-04542-9.

    Article  CAS  Google Scholar 

  25. Zhang G, Xiao C, Rahimi A, Safarpour M. Thermal and mechanical buckling and vibration analysis of FG-GPLRC annular plate using higher order shear deformation theory and generalized differential quadrature method. Int J Appl Mech. 2020;12(02):2050019. https://doi.org/10.1142/S1758825120500192.

    Article  Google Scholar 

  26. Yaghoobi H, Taheri F. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos Struct. 2020;252:112700. https://doi.org/10.1016/j.compstruct.2020.112700.

    Article  Google Scholar 

  27. Yang Y, Chen B, Lin W, Li Y, Dong Y. Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation. Aerosp Sci Technol. 2021;110:106495. https://doi.org/10.1016/j.ast.2021.106495.

    Article  Google Scholar 

  28. Anirudh B, Ganapathi M, Anant C, Polit O. A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling. Compos Struct. 2019;222:110899. https://doi.org/10.1016/j.compstruct.2019.110899.

    Article  Google Scholar 

  29. Zhang Z, Yang F, Zhang H, Zhang T, Wang H, Xu Y, Ma Q. Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater Charact. 2021;171:110732. https://doi.org/10.1016/J.MATCHAR.2020.110732.

    Article  CAS  Google Scholar 

  30. Arshid E, Arshid H, Amir S, Mousavi SB. Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch Civ Mech Eng. 2021;21:6. https://doi.org/10.1007/s43452-020-00150-x.

    Article  Google Scholar 

  31. Sobhy M, Zenkour AM. Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory. Compos Struct. 2019;220:289–303. https://doi.org/10.1016/j.compstruct.2019.03.096.

    Article  Google Scholar 

  32. Liu G, Wu S, Shahsavari D, Karami B, Tounsi A. Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation. Eur J Mech A/Solids. 2022;95:104649. https://doi.org/10.1016/J.EUROMECHSOL.2022.104649.

    Article  ADS  MathSciNet  Google Scholar 

  33. Van Vinh P, Tounsi A, Belarbi MO. On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters. Eng Comput. 2022. https://doi.org/10.1007/S00366-022-01687-6.

    Article  Google Scholar 

  34. Barati MR, Zenkour AM. Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions. Compos Struct. 2017;182:91–8.

    Article  Google Scholar 

  35. Akgöz B, Civalek Ö. A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Compos Struct. 2017;176:1028–38. https://doi.org/10.1016/J.COMPSTRUCT.2017.06.039.

    Article  Google Scholar 

  36. Huang Y, Karami B, Shahsavari D, Tounsi A. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch Civ Mech Eng. 2021;21(4):1–15. https://doi.org/10.1007/S43452-021-00291-7.

    Article  Google Scholar 

  37. Rao R, Sahmani S, Safaei B. Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch Civ Mech Eng. 2021;21:1–17. https://doi.org/10.1007/S43452-021-00250-2.

    Article  Google Scholar 

  38. Kim J, Żur KK, Reddy JN. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos Struct. 2019;209:879–88. https://doi.org/10.1016/j.compstruct.2018.11.023.

    Article  Google Scholar 

  39. Shojaeefard MH, Saeidi Googarchin H, Ghadiri M, Mahinzare M. Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT. Appl Math Model. 2017;50:633–55. https://doi.org/10.1016/J.APM.2017.06.022.

    Article  MathSciNet  Google Scholar 

  40. Akgöz B, Civalek Ö. A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 2015;226:2277–94. https://doi.org/10.1007/S00707-015-1308-4.

    Article  MathSciNet  Google Scholar 

  41. Hung PT, Phung-Van P, Thai CH. A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient theory. Compos Struct. 2022;289:115467. https://doi.org/10.1016/J.COMPSTRUCT.2022.115467.

    Article  Google Scholar 

  42. Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng. 2021;21:1–19. https://doi.org/10.1007/S43452-021-00264-W.

    Article  Google Scholar 

  43. Saberi L, Nahvi H. Vibration analysis of a nonlinear system with a nonlinear absorber under the primary and super-harmonic resonances. Int J Eng. 2014;27:499–508. https://doi.org/10.5829/idosi.ije.2014.27.03c.18.

    Article  Google Scholar 

  44. Malekzadeh P, Setoodeh AR, Shojaee M. Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method. Comput Methods Appl Mech Eng. 2018;340:451–79. https://doi.org/10.1016/j.cma.2018.06.006.

    Article  ADS  MathSciNet  Google Scholar 

  45. Arshid E, Soleimani-Javid Z, Amir S, Duc ND. Higher-order hygro-magneto-electro-thermomechanical analysis of FG-GNPs-reinforced composite cylindrical shells embedded in PEM layers. Aerosp Sci Technol. 2022;126:107573. https://doi.org/10.1016/J.AST.2022.107573.

    Article  Google Scholar 

  46. Zenkour AM, Aljadani MH. Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates. Eur J Mech A/Solids. 2019;78:103835. https://doi.org/10.1016/j.euromechsol.2019.103835.

    Article  ADS  MathSciNet  Google Scholar 

  47. Aditya Narayan D, Ben Zineb T, Polit O, Pradyumna B, Ganapathi M. Large amplitude free flexural vibrations of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory. Int J Non Linear Mech. 2019;116:302–17. https://doi.org/10.1016/j.ijnonlinmec.2019.07.010.

    Article  Google Scholar 

  48. Ganapathi M, Merzouki T, Polit O. Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach. Compos Struct. 2018;184:821–38. https://doi.org/10.1016/j.compstruct.2017.10.066.

    Article  Google Scholar 

  49. Liu Z, Yang C, Gao W, Wu D, Li G. Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. Int J Eng Sci. 2019;137:37–56. https://doi.org/10.1016/j.ijengsci.2018.12.003.

    Article  MathSciNet  CAS  Google Scholar 

  50. Liu H, Wu H, Lyu Z. Nonlinear resonance of FG multilayer beam-type nanocomposites: effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerosp Sci Technol. 2020;98:105702. https://doi.org/10.1016/j.ast.2020.105702.

    Article  Google Scholar 

  51. Asgari GR, Arabali A, Babaei M, Asemi K. Dynamic instability of sandwich beams made of isotropic core and functionally graded graphene platelets-reinforced composite face sheets. Int J Struct Stab Dyn. 2022. https://doi.org/10.1142/S0219455422500924.

    Article  MathSciNet  Google Scholar 

  52. Arshid E, Amir S, Loghman A. Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-composite layers. J Sandw Struct Mater. 2020. https://doi.org/10.1177/1099636220955027.

    Article  Google Scholar 

  53. Gao K, Gao W, Chen D, Yang J. Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos Struct. 2018;204:831–46. https://doi.org/10.1016/j.compstruct.2018.08.013.

    Article  Google Scholar 

  54. Arshid E, Amir S, Loghman A. Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp Sci Technol. 2021. https://doi.org/10.1016/j.ast.2021.106561.

    Article  Google Scholar 

  55. Kaddari M, Kaci A, Bousahla AA, Tounsi A, Bourada F, Tounsi A, Bedia EAA, Al-Osta MA. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis. Comput Concr. 2020;25:37–57. https://doi.org/10.12989/cac.2020.25.1.037.

    Article  Google Scholar 

  56. Li Q, Wu D, Gao W, Tin-Loi F, Liu Z, Cheng J. Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory. Eur J Mech A/Solids. 2019;78:103852. https://doi.org/10.1016/j.euromechsol.2019.103852.

    Article  ADS  MathSciNet  Google Scholar 

  57. Zhao J, Xie F, Wang A, Shuai C, Tang J, Wang Q. Dynamics analysis of functionally graded porous (FGP) circular, annular and sector plates with general elastic restraints. Compos Part B Eng. 2019;159:20–43. https://doi.org/10.1016/j.compositesb.2018.08.114.

    Article  Google Scholar 

  58. Hebali H, Boulefrakh L, Chikh A, Bousahla AA, Tounsi A, Mahmoud SR. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomech Eng. 2019;18:161–78. https://doi.org/10.12989/GAE.2019.18.2.161.

    Article  Google Scholar 

  59. Amari A, Hassan ZK, Al-Bahrani M, Saberi L, Maktoof MAJ. Practical parameter tuning toward enhancing thermomechanical shock resistance of the nanocomposite structure. Mech Adv Mater Struct. 2022. https://doi.org/10.1080/15376494.2022.2145531.

    Article  Google Scholar 

  60. Yang W, He D. Free vibration and buckling analyses of a size-dependent axially functionally graded beam incorporating transverse shear deformation. Results Phys. 2017;7:3251–63. https://doi.org/10.1016/j.rinp.2017.08.028.

    Article  ADS  Google Scholar 

  61. Vera SA, Sanchez MD, Laura PAA, Vega DA. Transverse vibrations of circular, annular plates with several combinations of boundary conditions. J Sound Vib. 1998;213:757–62.

    Article  ADS  Google Scholar 

  62. Singh B, Chakraverty S. Transverse vibration of annular circular and elliptic plates using the characteristic orthogonal polynomials in two dimensions. J Sound Vib. 1993;162:537–46.

    Article  ADS  Google Scholar 

  63. Selmane A, Lakis AA. Natural frequencies of transverse vibrations of non-uniform circular and annular plates. J Sound Vib. 1999;220:225–49.

    Article  ADS  Google Scholar 

  64. Ke LL, Yang J, Kitipornchai S, Bradford MA. Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos Struct. 2012;94:3250–7. https://doi.org/10.1016/j.compstruct.2012.04.037.

    Article  Google Scholar 

  65. Arshid E, Amir S, Loghman A. Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int J Mech Sci. 2020;180:105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.

    Article  Google Scholar 

  66. Mao JJ, Lu HM, Zhang W, Lai SK. Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Compos Struct. 2020;236:111813. https://doi.org/10.1016/J.COMPSTRUCT.2019.111813.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this study. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work.

Funding

The authors declared that there is no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Amir.

Ethics declarations

Conflicts of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Research involving human participants and/or animals

The authors declared that this research does not involve human and/or animal participants.

Informed consent

This paper has not been published elsewhere nor has it been submitted for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshid, E., Amir, S. & Loghman, A. Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs. Archiv.Civ.Mech.Eng 23, 100 (2023). https://doi.org/10.1007/s43452-023-00624-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00624-8

Keywords

Navigation