Skip to main content
Log in

Nonlinear shear constitutive model for peak shear-type joints based on improved Harris damage function

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The majority of jointed rock mass failures mainly occur along the joints in shear mode, which promotes a wide investigation on the proposal of a reasonable and reliable shear constitutive model of rock joints. In this paper, based on Improved Harris function and laboratory shear tests, a new constitutive model of saw-tooth joints was proposed. Firstly, a series of laboratory direct shear tests were carried out on saw-tooth joint specimens made of rock-like materials (cement mortar) to obtain the shear stress-displacement curves. Subsequently, the test results were divided into sliding failure type and peak shear type according to whether there is a significant stress drop between peak stress and residual stress. It is assumed that rock elements can be divided into undamaged parts and damaged parts during the shearing process. The stress-displacement relation of the undamaged part satisfies Hooke’s law, while the damaged part provides residual stress. Via the comparison with commonly used micro-element failure probability density functions, the Improved Harris distribution function was selected as the standard to characterize the strength of micro rock units. Finally, derived from the theory of damage statistical mechanics, a damage statistical constitutive model was proposed, which can reflect the deformation characteristics of rock joints. Compared with previous models and experimental data, the model proposed in this paper can represent the trend of peak shear curve variation with higher accuracy, the parameters are easy to be solved and have obvious physical significance, which verifies the advantages and applicability of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yang SQ, Chen M, Jing HW, Chen KF, Meng B. A case study on large deformation failure mechanism of deep soft rock roadway in Xin’An coal mine, China. Eng Geol. 2017;217:89–101. https://doi.org/10.1016/j.enggeo.2016.12.012.

    Article  Google Scholar 

  2. Lin Q, Cao P, Cao R, Lin H, Meng J. Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression. Arch Civ Mech Eng. 2020;20:19. https://doi.org/10.1007/s43452-020-00027-z.

    Article  Google Scholar 

  3. Lin H, Xiong Z, Liu T, Cao R, Cao P. Numerical simulations of the effect of bolt inclination on the shear strength of rock joints. Int J Rock Mech Min Sci. 2014;66:49–56. https://doi.org/10.1016/j.ijrmms.2013.12.010.

    Article  Google Scholar 

  4. Goodman RE, Taylor RL, Brekke TL. A model for the mechanics of jointed rock. J Soil Mech Found Div. 1968;94:637–59.

    Article  Google Scholar 

  5. Bandis SC, Lumsden AC, Barton NR. Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr. 1983;20:249–68.

    Article  Google Scholar 

  6. Desai CS, Fishman KL. Plasticity-based constitutive model with associated testing for joints. Int J Rock Mech Min Sci Geomech Abstr. 1991;28:15–26.

    Article  Google Scholar 

  7. Saeb S, Amadei B. Modelling rock joints under shear and normal loading. Int J Rock Mech Min Sci Geomech Abstr. 1992;1992:267–78.

    Article  Google Scholar 

  8. Goodman RE. Methods of geological engineering in discontinuous rocks. Eagan: West Publishing Co; 1976.

    Google Scholar 

  9. Zhang C, Zou P, Wang Y, Jiang T, Lin H, Cao P. An elasto-visco-plastic model based on stress functions for deformation and damage of water-saturated rocks during the freeze-thaw process. Constr Build Mater. 2020;250:118862. https://doi.org/10.1016/j.conbuildmat.2020.118862.

    Article  Google Scholar 

  10. Cao R, Cao P, Lin H, Ma G, Zhang C, Jiang C. Failure characteristics of jointed rock-like material containing multi-joints under a compressive-shear test: experimental and numerical analyses. Arch Civ Mech Eng. 2018;18:784–98.

    Article  Google Scholar 

  11. Simon R. Analysis of fault-slip mechanisms in hard rock mining. Canada: McGill University; 1999.

    Google Scholar 

  12. Li Y, Oh J, Mitra R, Hebblewhite B. A constitutive model for a laboratory rock joint with multi-scale asperity degradation. Comput Geotech. 2016;72:143–51.

    Article  Google Scholar 

  13. Zhou H, Meng F, Zhang C, Hu D, Lu J, Xu R. Investigation of the acoustic emission characteristics of artificial saw-tooth joints under shearing condition. Acta Geotech. 2016;11:925–39.

    Article  Google Scholar 

  14. Zhang X, Jiang Q, Chen N, Wei W, Feng X. Laboratory investigation on shear behavior of rock joints and a new peak shear strength criterion. Rock Mech Rock Eng. 2016;49:1–18.

    Article  Google Scholar 

  15. Zhang CY, Lin H, Qiu CM, Jiang TT, Zhang JH. The effect of cross-section shape on deformation, damage and failure of rock-like materials under uniaxial compression from both a macro and micro viewpoint. Int J Damage Mech. 2020;20:1–20. https://doi.org/10.1177/1056789520904119.

    Article  Google Scholar 

  16. Han Z, Li D, Zhou T, Zhu Q, Ranjith PG. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses. Int J Rock Mech Min Sci. 2020;131:104352. https://doi.org/10.1016/j.ijrmms.2020.104352.

    Article  Google Scholar 

  17. Xia CC, Sun ZQ. Engineering rock joint mechanics. Shanghai: Tongji Press; 2002.

    Google Scholar 

  18. Oh J, Cording EJ, Moon T. A joint shear model incorporating small-scale and large-scale irregularities. Int J Rock Mech Min Sci. 2015;76:78–87.

    Article  Google Scholar 

  19. Bian K, Liu J, Zhang W, Zheng X, Ni S, Liu Z. Mechanical Behavior And Damage Constitutive Model Of Rock Subjected To Water-Weakening Effect And Uniaxial Loading. Rock Mech Rock Eng. 2018;2018:1–10.

    Google Scholar 

  20. Yi L, Feng D. A damage constitutive model for intermittent jointed rocks under cyclic uniaxial compression. Int J Rock Mech Min Sci. 2018;103:289–301.

    Article  Google Scholar 

  21. Wang ZL, Li YC, Wang JG. A damage-softening statistical constitutive model considering rock residual strength. Comput Geosci. 2007;33:1–9.

    Article  Google Scholar 

  22. Li X, Cao WG, Su YH. A statistical damage constitutive model for softening behavior of rocks. Eng Geol. 2012;143:1–17.

    Article  Google Scholar 

  23. Li TC, Lu LX, Zhang SL, Sun JC. Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements. J Zhejiang Univ Sci A. 2015;16:644–55.

    Article  Google Scholar 

  24. Cao WG, Wang JY, Yc Z. Study of simulation method for the shear deformation of rock structural planes and interfaces with consideration of residual strength. China Civ Eng J. 2012;45:127–33. https://doi.org/10.15951/j.tmgcxb.2012.04.001.

    Article  Google Scholar 

  25. Xie SJ, Lin H, Chen YF, Yong R, Xiong W, Du SG. A damage constitutive model for shear behavior of joints based on determination of the yield point. Int J Rock Mech Min Sci. 2020;128:12. https://doi.org/10.1016/j.ijrmms.2020.104269.

    Article  Google Scholar 

  26. Yang S, Xu T, He L, Jing H, Wen S, Yu Q. Numerical study on failure behavior of brittle rock specimen containing pre-existing combined flaws under different confining pressure. Arch Civ Mech Eng. 2015;15:1085–97.

    Article  Google Scholar 

  27. Song C, Qiao C, Ye Q, Khan MU. Comparative study on three-dimensional statistical damage constitutive modified model of rock based on power function and Weibull distribution. Environ Earth Sci. 2018;77:108.

    Article  Google Scholar 

  28. Cao WG, Xiang LI, Zhao H. Damage constitutive model for strain-softening rock based on normal distribution and its parameter determination. J Central South Univ. 2007;14:719–24.

    Article  Google Scholar 

  29. Jian D, Gu D. On a statistical damage constitutive model for rock materials. Comput Geosci. 2011;37:122–8.

    Article  Google Scholar 

  30. Huang H, Ju N, Li L, Xiao J, Li M, Bai J, et al. Improved Harris function based statistical damage softening model for rocks. J Eng Geol. 2018;26:520–6.

    Google Scholar 

  31. Xie SJ, Lin H, Wang YX, Chen YF, Xiong W, Zhao YL, et al. A statistical damage constitutive model considering whole joint shear deformation. Int J Damage Mech. 2020;29:988–1008. https://doi.org/10.1177/1056789519900778.

    Article  Google Scholar 

  32. Lin H, Xie SJ, Yong R, Chen YF, Du SG. An empirical statistical constitutive relationship for rock joint shearing considering scale effect. CR Mec. 2019;347:561–75. https://doi.org/10.1016/j.crme.2019.08.001.

    Article  Google Scholar 

  33. Flamand R, Archambault G, Gentier S, Joëlle R, Rouleau A. An experimental study of the shear behavior of irregular joints based on angularities and progressive degradation of the surfaces, 1994.

  34. Tang ZC, Zhang QZ, Peng J, Jiao YY. Experimental study on the water-weakening shear behaviors of sandstone joints collected from the middle region of Yunnan province, PR China. Eng Geol. 2019;2019:258. https://doi.org/10.1016/j.enggeo.2019.105161.

    Article  Google Scholar 

  35. Muralha J, Grasselli G, Tatone B, Blümel M, Chryssanthakis P, Jiang Y. ISRM suggested method for laboratory determination of the shear strength of rock joints: revised version. Rock Mech Rock Eng. 2014;47:291–302.

    Article  Google Scholar 

  36. Tang ZC, Xia CC, Xiao SG. Constitutive model for joint shear stress-displacement and analysis of dilation. Chin J Rock Mech Eng. 2011;30:917–25.

    Google Scholar 

  37. Grasselli G, Egger P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int J Rock Mech Min Sci. 2003;40:25–40. https://doi.org/10.1016/S1365-1609(02)00101-6.

    Article  Google Scholar 

  38. Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 1951;18:293–7.

    Article  Google Scholar 

  39. Basu B, Tiwari D, Kundu D, Prasad R. Is Weibull distribution the most appropriate statistical strength distribution for brittle materials? Ceram Int. 2009;35:237–46.

    Article  Google Scholar 

  40. Chen LH, Chen ZY, Liu JM. Probability distribution of soil strength. Yantu Lixue/Rock Soil Mech. 2005;26:37–40.

    Google Scholar 

Download references

Acknowledgements

This paper gets its funding from project (51774322) supported by National Natural Science Foundation of China; Project (2018JJ2500) supported by Hunan Provincial Natural Science Foundation of China. Project (2019zzts666, 2019zzts303) supported by the Fundamental Research Funds for the Central Universities of Central South University. The authors wish to acknowledge these supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Lin or Jiangteng Li.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix, we provide a detailed procedure for solving the parameters a and b.

By Eq. (13) to obtain the first derivative of the peak-strength point (up, τp) as follows:

$$ \frac{{{\text{d}}\tau }}{{{\text{d}}u}}\;{ = }\;{\frac{{\left[ {k_{\text{s}} { + }ab \times k_{\text{s}} \times \tau_{\text{r}} \left( {k_{s} u_{\text{p}} - {\tau_{y}} } \right)^{b - 1} } \right] \times \left[ {1 + a\left( {k_{s} {u_{\text{p}}} {- \tau_{y}} } \right)^{b} } \right] - \left[ {k_{\text{s}} {u_{\text{p}}} { + }a\tau_{\text{r}} \left( {k_{s} u_{\text{p}} - \tau_{y} } \right)^{b} } \right] \times ab \times k_{\text{s}} \left( {k_{\text{s}} {u_{\text{p}}} -{ \tau_{y}} } \right)^{b - 1} }}{{\left[ {1{\text{ + a}}\left( {k_{\text{s}} u_{\text{p}} - {\tau_{y}} } \right)^{b} } \right]^{2} }}}{ = }0 $$
(19)

The numerator of Eq. (19) is 0, that is:

$$ \begin{aligned} k_{\text{s}} &{ + }a \times k_{\text{s}} \times \left( {k_{\text{s}} u_{\text{p}} - \tau_{y} } \right)^{b} { + }ab \times k_{\text{s}} \tau_{\text{r}} \left( {k_{\text{s}} u_{\text{p}} - \tau_{y} } \right)^{b - 1} { + }a^{2} b \times k_{\text{s}} \tau_{\text{r}} \left( {k_{\text{s}} u_{\text{p}} - \tau_{y} } \right)^{2b - 1} \hfill \\ &- ab \times k_{\text{s}}^{2} \times u_{\text{p}} \left( {k_{\text{s}} u_{\text{p}} - \tau_{y} } \right)^{b - 1} - a^{2} b \times k_{\text{s}} \tau_{\text{r}} \left( {k_{\text{s}} u_{\text{p}} - \tau_{y} } \right)^{2b - 1}\,\, { = }\,\,0 \hfill \\ \end{aligned} $$
(20)

Then the \( a^{2} b \times k_{\text{s}} {\tau_{\text{r}}} \left( {k_{\text{s}}{ u_{\text{p}}} - {\tau_{y} }} \right)^{2b - 1} \) term is eliminated from Eq. (20) to obtain:

$$ k_{\text{s}} { + }a \times k_{\text{s}} \times \left( {k_{\text{s}} u_{\text{p}} - \tau_{y} } \right)^{b} { + }\left( {\tau_{\text{r}} - k_{\text{s}} u_{\text{p}} } \right) \times ab \times k_{\text{s}} \left( {k_{\text{s}} u_{\text{p}} - \tau_{y} } \right)^{b - 1} { = }0 $$
(21)

According to Eq. (14), the following formula can be obtained:

$$ {k_{\text{s}}} {u_{\text{p}}} { + }a\left( {k_{\text{s}} {u_{\text{p}}} - \tau_{y} } \right)^{b} {\tau_{\text{r}}} { = }{\tau_{\text{p}}} { + }{\tau_{\text{p}}} \times a\left( {k_{\text{s}} {u_{\text{p}}} - \tau_{y} } \right)^{b} $$
(22)

Equation (22) can also be rewritten as:

$$ a\left( {{k_{\text{s}}} {u_{\text{p}}} - {\tau_{y}} } \right)^{b} { = }{\frac{{k_{\text{s}} u_{\text{p}} - \tau_{\text{p}} }}{{\tau_{\text{p}} - \tau_{\text{r}} }}} $$
(23)

Multiply both sides of Eq. (21) by \( {k_{\text{s}}} {u_{\text{p}}} - \tau_{y} \) to get a new equation. In this new equation, replace the \( a\left( {{k_{\text{s}}} {u_{\text{p}}} - \tau_{y} } \right)^{b} \) term with the \( {\frac{{k_{\text{s}} {u_{\text{p}}} - {\tau_{\text{p}}} }}{{\tau_{\text{p}} - {\tau_{\text{r}}}} }} \) term (see Eq. (23)), and the following formula can be obtained:

$$ {k_{\text{s}}} \left( {k_{\text{s}} {u_{\text{p}}} - \tau_{y} } \right){ + }k_{\text{s}} \times \left( {k_{\text{s}} u_{\text{p}} - \tau_{y} } \right) \times \frac{{k_{\text{s}} u_{\text{p}} - \tau_{\text{p}} }}{{\tau_{\text{p}} - \tau_{\text{r}} }}{ + }b \times k_{\text{s}} \left( {\tau_{\text{r}} - k_{\text{s}} u_{\text{p}} } \right){\frac{{k_{\text{s}} u_{\text{p}} - \tau_{\text{p}} }}{{\tau_{\text{p}} - \tau_{\text{r}} }}}{ = }0 $$
(24)

The above expression can also be written:

$$ k_{\text{s}} \left( {k_{\text{s}} u_{\text{p}} - \tau_{y} } \right) \times \left[ {1{ + }{\frac{{k_{\text{s}} u_{\text{p}} - \tau_{\text{p}} }}{{\tau_{\text{p}} - \tau_{\text{r}} }}}} \right]{ + }b \times k_{\text{s}} \left( {\tau_{\text{r}} - k_{\text{s}} u_{\text{p}} } \right){\frac{{k_{\text{s}} u_{\text{p}} - \tau_{\text{p}} }}{{\tau_{\text{p}} - \tau_{\text{r}}} }}\;{ = }\;0 $$
(25)

Eq. (25) can be simplified to:

$$ \left( {k_{\text{s}} {u_{\text{p}}} - \tau_{y} } \right)\left( {k_{\text{s}} {u_{\text{p}}} - {\tau_{\text{r}}} } \right){ + }b\left( {\tau_{\text{r}} - {k_{\text{s}}} u_{\text{p}} } \right)\left( {k_{\text{s}} {u_{\text{p}}} - {\tau_{\text{p}}} } \right)\;{ = }\;0 $$
(26)

According to Eq. (26), the model expression of b can be solved as follows:

$$ b\;{ = }\;{\frac{{k_{\text{s}} u_{\text{p}} - \tau_{y} }}{{k_{\text{s}} u_{\text{p}} - \tau_{\text{p}} }}} $$
(27)

Substituting Eqs. (27) into (28), the model expression of parameter a can be expressed as

$$ a\;{ = }\;{\frac{{k_{\text{s}} u_{\text{p}} - \tau_{\text{p}} }}{{\left( {\tau_{\text{p}} - \tau_{\text{r}} } \right)\left( {k_{s} u_{\text{p}} - \tau_{\text{y}} } \right)^{b} }}} $$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Lin, H., Wang, Y. et al. Nonlinear shear constitutive model for peak shear-type joints based on improved Harris damage function. Archiv.Civ.Mech.Eng 20, 95 (2020). https://doi.org/10.1007/s43452-020-00097-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00097-z

Keywords

Navigation