Skip to main content
Log in

Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

To better understand the mechanical behavior in a jointed rock mass, a series of uniaxial compression tests were conducted on non-persistently jointed rock specimens with double circular holes. Acoustic emission (AE) and digital image correlation (DIC) techniques were applied to capture micro-crack events and real-time strain field evolution in the specimens. The results indicate that the existence of non-persistent joints has a significant influence on the strength characteristics of the specimens. Specifically, peak strength decreases at first and reaches a minimum at 30° then increases with increase in the joint dip angle. DIC technology has successfully monitored the development of surface strain fields. The fracture evolution process is comprehensively understood. Every sudden change in a strain field is usually accompanied by apparent AE events and stress–strain curves take the form of oscillations. The crack coalescence modes among joints can be summarized as six types and the crack coalescence patterns around holes and joints can be divided into three categories. These results are helpful to understanding further the mechanical properties and fracture mechanism of openings in non-persistently jointed rock masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yang ZY, Chen JM, Huang TH. Effect of joint sets on the strength and deformation of rock mass models. Int J Rock Mech Min Sci. 1998;35(1):75–84. https://doi.org/10.1016/S1365-1609(98)80024-5.

    Article  Google Scholar 

  2. Singh M, Rao KS, Ramamurthy T. Strength and deformational behaviour of a jointed rock mass. Rock Mech Rock Eng. 2002;35(1):45–64. https://doi.org/10.1007/s006030200008.

    Article  Google Scholar 

  3. Huang D, Cen DF, Ma GW, Huang RQ. Step-path failure of rock slopes with intermittent joints. Landslides. 2015;12(5):911–26. https://doi.org/10.1007/s10346-014-0517-6.

    Article  Google Scholar 

  4. Einstein HH, Veneziano D, Baecher GB, O’Reilly KJ. The effect of discontinuity persistence an rock slope stability. Int J Rock Mech Min Sci. 1983;20(5):227–36. https://doi.org/10.1016/0148-9062(83)90003-7.

    Article  Google Scholar 

  5. Wang TT, Huang TH. A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints. Int J Rock Mech Min Sci. 2009;46(3):521–30. https://doi.org/10.1016/j.ijrmms.2008.09.011.

    Article  Google Scholar 

  6. Prudencio M, Jan MVS. Strength and failure modes of rock mass models with non-persistent joints. Int J Rock Mech Min Sci. 2007;44(6):890–902. https://doi.org/10.1016/j.ijrmms.2007.01.005.

    Article  Google Scholar 

  7. Bahrani N, Kaiser PK. Strength degradation of non-persistently jointed rockmass. Int J Rock Mech Min Sci. 2013;62:28–33. https://doi.org/10.1016/j.ijrmms.2013.03.013.

    Article  Google Scholar 

  8. Bahaaddini M, Sharrock G, Hebblewhite BK. Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput Geotech. 2013;49:206–25. https://doi.org/10.1016/j.compgeo.2012.10.012.

    Article  Google Scholar 

  9. Yin P, Wong RHC, Chau KT. Coalescence of two parallel pre-existing surface cracks in granite. Int J Rock Mech Min Sci. 2014;68:66–84. https://doi.org/10.1016/j.ijrmms.2014.02.011.

    Article  Google Scholar 

  10. Li YP, Chen LZ, Wang YH. Experimental research on pre-cracked marble under compression. Int J Solids Struct. 2005;42(9):2505–16. https://doi.org/10.1016/j.ijsolstr.2004.09.033.

    Article  Google Scholar 

  11. Yang SQ, Dai YH, Han LJ, Jin ZQ. Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng Fract Mech. 2009;76(12):1833–45. https://doi.org/10.1016/j.engfracmech.2009.04.005.

    Article  Google Scholar 

  12. Yang SQ, Jing HW. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. Int J Fract. 2011;168(2):227–50. https://doi.org/10.1007/s10704-010-9576-4.

    Article  Google Scholar 

  13. Yang SQ. Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Eng Fract Mech. 2011;78(17):3059–81. https://doi.org/10.1016/j.engfracmech.2011.09.002.

    Article  Google Scholar 

  14. Cao P, Liu TY, Pu CZ, Lin H. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng Geol. 2015;187:113–21. https://doi.org/10.1016/j.enggeo.2014.12.010.

    Article  Google Scholar 

  15. Cao RH, Cao P, Fan X, Xiong X, Lin H. An experimental and numerical study on mechanical behavior of ubiquitous-joint brittle rock-like specimens under uniaxial compression. Rock Mech Rock Eng. 2016;49(11):4319–38. https://doi.org/10.1007/s00603-016-1029-6.

    Article  Google Scholar 

  16. Feng P, Dai F, Liu Y, Xu NW, Du HB. Coupled effects of static-dynamic strain rates on the mechanical and fracturing behaviors of rock-like specimens containing two unparallel fissures. Eng Fract Mech. 2019;207:237–53. https://doi.org/10.1016/j.engfracmech.2018.12.033.

    Article  Google Scholar 

  17. Feng P, Dai F, Liu Y, Du HB. Mechanical behaviors of rock-like specimens with two non-coplanar fissures subjected to coupled static-dynamic loads. Eng Fract Mech. 2018;199:692–704. https://doi.org/10.1016/j.engfracmech.2018.07.009.

    Article  Google Scholar 

  18. Hoek E, Bieniawski ZT. Brittle fracture propagation in rock under compression. Int J Fract. 1965;1(3):137–55. https://doi.org/10.1007/BF00186851.

    Article  Google Scholar 

  19. Dyskin AV, Sahouryeh E, Jewell RJ, Joer H, Ustinov KB. Influence of shape and locations of initial 3-d cracks on their growth in uniaxial compression. Eng Fract Mech. 2003;70(15):2115–36. https://doi.org/10.1016/s0013-7944(02)00240-0.

    Article  Google Scholar 

  20. Park CH, Bobet A. Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci. 2009;46(5):819–29. https://doi.org/10.1016/j.ijrmms.2009.02.006.

    Article  Google Scholar 

  21. Wong LNY, Einstein HH. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci. 2009;46(2):239–49. https://doi.org/10.1016/j.ijrmms.2008.03.006.

    Article  Google Scholar 

  22. Yang SQ, Tian WL, Huang YH, Ma ZG, Fan LF, Wu ZJ. Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression. Eng Fract Mech. 2018;194:154–74. https://doi.org/10.1016/j.engfracmech.2018.03.003.

    Article  Google Scholar 

  23. Wei Z, Yang SQ, Tian WL. Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression. Eng Fract Mech. 2018;200:430–50. https://doi.org/10.1016/j.engfracmech.2018.08.016.

    Article  Google Scholar 

  24. Yang SQ, Huang YH, Tian WL, Zhu JB. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression. Eng Geol. 2017;217:35–48. https://doi.org/10.1016/j.enggeo.2016.12.004.

    Article  Google Scholar 

  25. Yang XX, Jing HW, Tang CA, Yang SQ. Effect of parallel joint interaction on mechanical behavior of jointed rock mass models. Int J Rock Mech Min Sci. 2017;92:40–53. https://doi.org/10.1016/j.ijrmms.2016.12.010.

    Article  Google Scholar 

  26. Wang XM, Zhu ZM, Wang M, Ying P, Dong YQ. Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts. Eng Fract Mech. 2017;181:52–64. https://doi.org/10.1016/j.engfracmech.2017.06.024.

    Article  Google Scholar 

  27. Wang M, Zhu ZM, Dong YQ, Zhou L. Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads. Eng Fract Mech. 2017;177:33–44. https://doi.org/10.1016/j.engfracmech.2017.03.042.

    Article  Google Scholar 

  28. Cao RH, Cao P, Lin H, Ma GW, Fan X, Xiong XG. Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: experimental studies and particle mechanics approach. Arch Civ Mech Eng. 2018;18(1):198–214. https://doi.org/10.1016/j.acme.2017.06.010.

    Article  Google Scholar 

  29. Miao ST, Pan PZ, Wu ZH, Zhao S. Fracture analysis of sandstone with a single filled flaw under uniaxial compression. Eng Fract Mech. 2018;204:319–43. https://doi.org/10.1016/j.engfracmech.2018.10.009.

    Article  Google Scholar 

  30. Zhou XP, Wang YT, Zhang JZ, Liu FN. Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness. Rock Mech Rock Eng. 2018;52(3):691–718. https://doi.org/10.1007/s00603-018-1600-4.

    Article  Google Scholar 

  31. Zhu QQ, Li DY, Han ZY, Li XB, Zhou ZL. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression. Int J Rock Mech Min Sci. 2019;115:33–47. https://doi.org/10.1016/j.ijrmms.2019.01.010.

    Article  Google Scholar 

  32. Zhang QB, Zhao J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng. 2014;47(4):1411–78. https://doi.org/10.1007/s00603-013-0463-y.

    Article  Google Scholar 

  33. Wong RHC, Lin P, Tang CA, Chau KT. Creeping damage around an opening in rock-like material containing non-persistent joints. Eng Fract Mech. 2002;69(17):2015–27. https://doi.org/10.1016/S0013-7944(02)00074-7.

    Article  Google Scholar 

  34. Wong RHC, Lin P, Tang CA. Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression. Mech Mater. 2006;38(1–2):142–59. https://doi.org/10.1016/j.mechmat.2005.05.017.

    Article  Google Scholar 

  35. Fan X, Li KH, Lai HP, Xie YL, Cao RH, Zheng J. Internal stress distribution and cracking around flaws and openings of rock block under uniaxial compression: a particle mechanics approach. Comput Geotech. 2018;102:28–38. https://doi.org/10.1016/j.compgeo.2018.06.002.

    Article  Google Scholar 

  36. ISRM. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci. 1979;16(2):138–40. https://doi.org/10.1016/0148-9062(79)91451-7.

    Article  Google Scholar 

  37. Aramis GOM (2018) Theory and user manual. http://www.gom.com. Accessed Dec 2018.

  38. Zhang XP, Wong LNY. Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech Rock Eng. 2013;46(5):1001–21. https://doi.org/10.1007/s00603-012-0323-1.

    Article  Google Scholar 

  39. Yang SQ, Yin PF, Zhang YC, Chen M, Zhang XP, Jing HW, Zhang QY. Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole. Int J Rock Mech Min Sci. 2019;114:101–21. https://doi.org/10.1016/j.ijrmms.2018.12.017.

    Article  Google Scholar 

  40. Wong RHC, Chau KT. Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci. 1998;35(2):147–64. https://doi.org/10.1016/S0148-9062(97)00303-3.

    Article  Google Scholar 

  41. Sagong M, Bobet A. Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci. 2002;39(2):229–41. https://doi.org/10.1016/S1365-1609(02)00027-8.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11772358, 51174228). Meanwhile, authors are very grateful for the anonymous reviewers’ valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibin Lin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Ethical approval

Authors state that the research was conducted according to ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Cao, P., Cao, R. et al. Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression. Archiv.Civ.Mech.Eng 20, 19 (2020). https://doi.org/10.1007/s43452-020-00027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00027-z

Keywords

Navigation