Skip to main content

Advertisement

Log in

The study of platelet aggregation using a microtiter plate reader ‒ methodological considerations

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Optical aggregometry by 96-well plate assay, the microplate method, is a fast, efficient, and readily available method for measuring the pharmacological effects of antiplatelet drugs. Even though recent years have witnessed growing interest in adopting the microplate method for widespread use, it remains in the shadow of the standard light transmission aggregometry (LTA). Regardless of the method used, the results of platelet aggregation depend on a variety of factors and often vary among laboratories worldwide. While several methodological papers have examined the microplate method, no standards have been established, most likely because the approach is not used as a diagnostic tool. Currently, the microplate method is recommended by researchers to be used in conjunction with LTA or as an adjunct to LTA. This raises the question of whether an optimal protocol exists for microplate aggregometry, and what are the key considerations in a good experimental protocol for obtaining reliable results? This article attempts to address these questions by summarizing the knowledge accumulated in this field over the last three decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data presented in Fig. 1 are available from the corresponding author upon reasonable request.

Abbreviations

4PL:

4-parameter logistic model

AA:

Arachidonic acid

ADP:

Adenosine 5’-diphosphate

ATP release assay:

Adenosine 5′-triphosphate release assay

EC50 :

Half maximal effective concentration

ELISA:

Enzyme-linked immunosorbent assay

HIV:

Human immunodeficiency virus

IC50 :

Half-maximal inhibitory concentration

LTA:

Light transmission aggregometry

PAR-4 agonist:

Proteinase-activated receptor-4 agonist

PARs:

Protease-activated receptors

PBS:

Phosphate-buffered saline

PM:

Prasugrel metabolite

PRP:

Platelet-rich plasma

TP receptor:

Thromboxane A2 receptor

TRAP:

Thrombin receptor-activating peptide

TXA2/TXB2 :

Thromboxane A2/thromboxane B2

U46619:

Stable thromboxane A2 receptor agonist

VWD:

Von Willebrand disease

VWF:

Von Willebrand factor

VWF: RCo:

Ristocetin cofactor assay

References

  1. Gaarder A, Jonsen J, Laland S, Hellem A, Owren PA. Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature. 1961;192:531–2.

    Article  CAS  PubMed  Google Scholar 

  2. Hellem AJ, Borchgrevink CF, Ames SB. The role of red cells in haemostasis: the relation between haematocrit, bleeding time and platelet adhesiveness. Br J Haematol. 1961;7:42–50.

    Article  CAS  PubMed  Google Scholar 

  3. Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927–9.

    Article  CAS  PubMed  Google Scholar 

  4. Born GV, Cross MJ. The aggregation of blood platelets. J Physiol. 1963;168(1):178–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Brien JR. Platelet aggregation: part II. Some results of an new method of study. J Clin Pathol. 1962;15(5):452–55.

    Article  Google Scholar 

  6. Zucker MB. Platelet aggregation measured by the photometric method. Methods Enzymol. 1989;169:117–33.

    Article  CAS  PubMed  Google Scholar 

  7. Gresele P, Harrison P, Bury L, Falcinelli E, Gachet C, Hayward CP, et al. Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. J Thromb Haemost. 2014;12(9):1562–9.

    Article  CAS  PubMed  Google Scholar 

  8. Alessi MC, Sie P, Payrastre B. Strengths and weaknesses of light transmission aggregometry in diagnosing Hereditary platelet function disorders. J Clin Med. 2020;9(3):763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gresele P, Falcinelli E, Bury L. Laboratory diagnosis of clinically relevant platelet function disorders. Int J Lab Hematol. 2018;40(Suppl 1):34–45.

    Article  PubMed  Google Scholar 

  10. Le Blanc J, Mullier F, Vayne C, Lordkipanidze M. Advances in platelet function testing-light transmission aggregometry and Beyond. J Clin Med. 2020;9(8):2636.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Larsen JB, Hvas AM, Hojbjerg JA. Platelet function testing: update and future directions. Semin Thromb Hemost. 2023;49(6):600–8.

    Article  PubMed  Google Scholar 

  12. Lordkipanidze M, Lowe GC, Kirkby NS, Chan MV, Lundberg MH, Morgan NV, et al. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: use of 96-well Optimul assay. Blood. 2014;123(8):e11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hsu H, Chan MV, Armstrong PC, Crescente M, Donikian D, Kondo M, et al. A pilot study assessing the implementation of 96-well plate-based aggregometry (Optimul) in Australia. Pathology. 2022;54(6):746–54.

    Article  CAS  PubMed  Google Scholar 

  14. Armstrong PC, Truss NJ, Ali FY, Dhanji AA, Vojnovic I, Zain ZN, et al. Aspirin and the in vitro linear relationship between thromboxane A2-mediated platelet aggregation and platelet production of thromboxane A2. J Thromb Haemost. 2008;6(11):1933–43.

    Article  CAS  PubMed  Google Scholar 

  15. Chan MV, Armstrong PC, Papalia F, Kirkby NS, Warner TD. Optical multichannel (optimul) platelet aggregometry in 96-well plates as an additional method of platelet reactivity testing. Platelets. 2011;22(7):485–94.

    Article  CAS  PubMed  Google Scholar 

  16. Tamang HK, Stringham EN, Tourdot BE. Platelet functional testing Via High-Throughput Microtiter plate-based assays. Curr Protoc. 2023;3(2):e668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fratantoni JC, Poindexter BJ. Measuring platelet aggregation with microplate reader. A new technical approach to platelet aggregation studies. Am J Clin Pathol. 1990;94(5):613–7.

    Article  CAS  PubMed  Google Scholar 

  18. Bednar B, Condra C, Gould RJ, Connolly TM. Platelet aggregation monitored in a 96 well microplate reader is useful for evaluation of platelet agonists and antagonists. Thromb Res. 1995;77(5):453–63.

    Article  CAS  PubMed  Google Scholar 

  19. Walkowiak B, Kesy A, Michalec L. Microplate reader–a convenient tool in studies of blood coagulation. Thromb Res. 1997;87(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  20. Krause S, Scholz T, Temmler U, Losche W. Monitoring the effects of platelet glycoprotein IIb/IIIa antagonists with a microtiter plate method for detection of platelet aggregation. Platelets. 2001;12(7):423–30.

    Article  CAS  PubMed  Google Scholar 

  21. Salmon DM. Optimisation of platelet aggregometry utilising micotitreplate technology and integrated software. Thromb Res. 1996;84(3):213–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hoylaerts MF, Thys C, Stassen JM, Vermylen J. Dose-responses to inducers and inhibitors of platelet aggregation analysed via a micro-method. Blood Coagul Fibrinolysis. 1996;7(2):187–90.

    Article  CAS  PubMed  Google Scholar 

  23. Ali FY, Armstrong PC, Dhanji AR, Tucker AT, Paul-Clark MJ, Mitchell JA, et al. Antiplatelet actions of statins and fibrates are mediated by PPARs. Arterioscler Thromb Vasc Biol. 2009;29(5):706–11.

    Article  CAS  PubMed  Google Scholar 

  24. Chan MV, Warner TD. Standardised optical multichannel (optimul) platelet aggregometry using high-speed shaking and fixed time point readings. Platelets. 2012;23(5):404–8.

    Article  CAS  PubMed  Google Scholar 

  25. Chan MV, Lordkipanidze M, Warner TD. Assessment of platelet function by high-throughput screening light transmission aggregometry: Optimul Assay. Methods Mol Biol. 2023;2663:627–36.

    Article  CAS  PubMed  Google Scholar 

  26. Peace AJ, Tedesco AF, Foley DP, Dicker P, Berndt MC, Kenny D. Dual antiplatelet therapy unmasks distinct platelet reactivity in patients with coronary artery disease. J Thromb Haemost. 2008;6(12):2027–34.

    Article  CAS  PubMed  Google Scholar 

  27. Cattaneo M, Cerletti C, Harrison P, Hayward CP, Kenny D, Nugent D, et al. Recommendations for the standardization of light transmission aggregometry: a Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J Thromb Haemost. 2013;11(6):1183–9.

    Article  Google Scholar 

  28. Vinholt PJ, Nybo M, Nielsen CB, Hvas AM. Light transmission aggregometry using pre-coated microtiter plates and a Victor X5 plate reader. PLoS ONE. 2017;12(10):e0185675.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bellavite P, Andrioli G, Guzzo P, Arigliano P, Chirumbolo S, Manzato F, et al. A colorimetric method for the measurement of platelet adhesion in microtiter plates. Anal Biochem. 1994;216(2):444–50.

    Article  CAS  PubMed  Google Scholar 

  30. Armstrong PC, Dhanji AR, Truss NJ, Zain ZN, Tucker AT, Mitchell JA, et al. Utility of 96-well plate aggregometry and measurement of thrombi adhesion to determine aspirin and clopidogrel effectiveness. Thromb Haemost. 2009;102(4):772–8.

    Article  CAS  PubMed  Google Scholar 

  31. Nowak J, Watala C, Boncler M. Antibody binding, platelet adhesion, and protein adsorption on various polymer surfaces. Blood Coagul Fibrinolysis. 2014;25(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  32. Boncler M. A commercial nonbinding surface effectively reduces Fibrinogen Adsorption but does not prevent platelet adhesion to Fibrinogen. Macromol Biosci. 2023;23(7):e2300052.

    Article  PubMed  Google Scholar 

  33. Chan MV, Armstrong PC, Warner TD. 96-well plate-based aggregometry. Platelets. 2018;29(7):650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dunster JL, Bye AP, Kriek N, Sage T, Mitchell JL, Kempster C, et al. Multiparameter phenotyping of platelet reactivity for stratification of human cohorts. Blood Adv. 2021;5(20):4017–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maayani S, Schwarz T, Martinez R, Tagliente TM. Activation of Gi-coupled receptors releases a tonic state of inhibited platelet aggregation. Platelets. 2001;12(2):94–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ramsey R, Evatt BL. Rapid assay for Von Willebrand factor activity using formalin-fixed platelets and microtitration technic. Am J Clin Pathol. 1979;72(6):996–9.

    Article  CAS  PubMed  Google Scholar 

  37. Truss NJ, Beavis J, MacCallum PK, Harrison P, Warner TD. Rapid and accurate method for the Von Willebrand factor ristocetin cofactor assay using 96-well microtiter plates. J Thromb Haemost. 2009;7(7):1226–8.

    Article  CAS  PubMed  Google Scholar 

  38. Favaloro EJ. Diagnosis or exclusion of Von Willebrand Disease using Laboratory Testing. Methods Mol Biol. 2017;1646:391–402.

    Article  CAS  PubMed  Google Scholar 

  39. Jarantow SW, Pisors ED, Chiu ML. Introduction to the Use of Linear and Nonlinear Regression Analysis in quantitative biological assays. Curr Protoc. 2023;3(6):e801.

    Article  CAS  PubMed  Google Scholar 

  40. Sebaugh JL. Guidelines for accurate EC50/IC50 estimation. Pharm Stat. 2011;10(2):128–34.

    Article  CAS  PubMed  Google Scholar 

  41. Armstrong PC, Leadbeater PD, Chan MV, Kirkby NS, Jakubowski JA, Mitchell JA, et al. In the presence of strong P2Y12 receptor blockade, aspirin provides little additional inhibition of platelet aggregation. J Thromb Haemost. 2011;9(3):552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan MV, Leadbeater PD, Watson SP, Warner TD. Not all light transmission aggregation assays are created equal: qualitative differences between light transmission and 96-well plate aggregometry. Platelets. 2018;29(7):686–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moran N, Kiernan A, Dunne E, Edwards RJ, Shields DC, Kenny D. Monitoring modulators of platelet aggregation in a microtiter plate assay. Anal Biochem. 2006;357(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  44. Sun P, McMillan-Ward E, Mian R, Israels SJ. Comparison of light transmission aggregometry and multiple electrode aggregometry for the evaluation of patients with mucocutaneous bleeding. Int J Lab Hematol. 2019;41(1):133–40.

    Article  PubMed  Google Scholar 

  45. Sharma P, Sachdeva MUS, Kumar N, Bose S, Bose P, Uppal V, et al. A comparative study between light transmission aggregometry and flow cytometric platelet aggregation test for the identification of platelet function defects in patients with bleeding. Blood Res. 2021;56(2):109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirkby NS, Leadbeater PD, Chan MV, Nylander S, Mitchell JA, Warner TD. Antiplatelet effects of aspirin vary with level of P2Y12 receptor blockade supplied by either ticagrelor or prasugrel. J Thromb Haemost. 2011;9(10):2103–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lundberg Slingsby MH, Gliemann L, Thrane M, Rytter N, Egelund J, Chan MV, et al. Platelet responses to pharmacological and physiological interventions in middle-aged men with different habitual physical activity levels. Acta Physiol (Oxf). 2018;223(1):e13028.

    Article  CAS  PubMed  Google Scholar 

  48. Rauzi F, Kirkby NS, Edin ML, Whiteford J, Zeldin DC, Mitchell JA, et al. Aspirin inhibits the production of proangiogenic 15(S)-HETE by platelet cyclooxygenase-1. FASEB J. 2016;30(12):4256–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shih CC, Chan MV, Kirkby NS, Vojnovic I, Mitchell JA, Armstrong PC, et al. Platelet inhibition by P2Y12 antagonists is potentiated by adenosine signalling activators. Br J Pharmacol. 2021;178(23):4758–71.

    Article  CAS  PubMed  Google Scholar 

  50. Leadbeater PD, Kirkby NS, Thomas S, Dhanji AR, Tucker AT, Milne GL, et al. Aspirin has little additional anti-platelet effect in healthy volunteers receiving prasugrel. J Thromb Haemost. 2011;9(10):2050–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scharf RE. Drugs that affect platelet function. Semin Thromb Hemost. 2012;38(8):865–83.

    Article  CAS  PubMed  Google Scholar 

  52. Ahmetaj-Shala B, Tesfai A, Constantinou C, Leszczynski R, Chan MV, Gashaw H, et al. Pharmacological assessment of ibuprofen arginate on platelet aggregation and colon cancer cell killing. Biochem Biophys Res Commun. 2017;484(4):762–6.

    Article  CAS  PubMed  Google Scholar 

  53. Nielsen CB, Nielsen C, Nybo M, Just SA, Vinholt PJ. The in vitro effect of antirheumatic drugs on platelet function. Platelets. 2020;31(2):248–57.

    Article  CAS  PubMed  Google Scholar 

  54. Vinholt PJ, Nielsen C, Soderstrom AC, Brandes A, Nybo M. Dabigatran reduces thrombin-induced platelet aggregation and activation in a dose-dependent manner. J Thromb Thrombolysis. 2017;44(2):216–22.

    Article  CAS  PubMed  Google Scholar 

  55. Knudsen GH, Nielsen C, Nielsen CB, Frederiksen H, Vinholt PJ. The effect of mycophenolate mofetil on platelet function. Blood Coagul Fibrinolysis. 2020;31(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  56. Grech J, Chan MV, Ochin C, Lachapelle A, Thibord F, Schneider Z, et al. Serotonin-affecting antidepressant use in relation to platelet reactivity. Clin Pharmacol Ther. 2022;111(4):909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mac Mullan PA, Peace AJ, Madigan AM, Tedesco AF, Kenny D, McCarthy GM. Platelet hyper-reactivity in active inflammatory arthritis is unique to the adenosine diphosphate pathway: a novel finding and potential therapeutic target. Rheumatology (Oxford). 2010;49(2):240–5.

    Article  CAS  PubMed  Google Scholar 

  58. Satchell CS, O’Halloran JA, Cotter AG, Peace AJ, O’Connor EF, Tedesco AF, et al. Increased platelet reactivity in HIV-1-infected patients receiving abacavir-containing antiretroviral therapy. J Infect Dis. 2011;204(8):1202–10.

    Article  CAS  PubMed  Google Scholar 

  59. Cooke NM, Egan K, McFadden S, Grogan L, Breathnach OS, O’Leary J, et al. Increased platelet reactivity in patients with late-stage metastatic cancer. Cancer Med. 2013;2(4):564–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kring C, Rasmussen LM, Lindholt JS, Diederichsen ACP, Vinholt PJ. Platelet aggregation is not altered among men with diabetes mellitus. Acta Diabetol. 2020;57(4):389–99.

    Article  CAS  PubMed  Google Scholar 

  61. Cunha J, Chan MV, Nkambule BB, Thibord F, Lachapelle A, Pashek RE, et al. Trends among platelet function, arterial calcium, and vascular function measures. Platelets. 2023;34(1):2238835.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Frelinger AL 3rd, Rivera J, Connor DE, Freson K, Greinacher A, Harrison P, et al. Consensus recommendations on flow cytometry for the assessment of inherited and acquired disorders of platelet number and function: communication from the ISTH SSC Subcommittee on platelet physiology. J Thromb Haemost. 2021;19(12):3193–202.

  63. Mangin PH, Gardiner EE, Nesbitt WS, Kerrigan SW, Korin N, Lam WA, et al. In vitro flow based systems to study platelet function and thrombus formation: recommendations for standardization: communication from the SSC on Biorheology of the ISTH. J Thromb Haemost. 2020;18(3):748–52.

    Article  CAS  PubMed  Google Scholar 

  64. Alessi MC, Coxon C, Ibrahim-Kosta M, Bacci M, Voisin S, Rivera J, et al. Multicenter evaluation of light transmission platelet aggregation reagents: communication from the ISTH SSC Subcommittee on platelet physiology. J Thromb Haemost. 2023;21(9):2596–610.

    Article  PubMed  Google Scholar 

  65. Pastakia KB, Brownson NE, Terle DA, Poindexter BJ. Amphotericin B induced abnormalities in human platelets. Clin Mol Pathol. 1996;49(5):M301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. Lowczowski, B.Sc., Medical University of Łódź, for proofreading the article. Funding for this project was provided by the Medical University of Łódź (503/6-020-01/503-61-001-19-00).

Author information

Authors and Affiliations

Authors

Contributions

MB: Conceptualization, Formal analysis, Investigation, Methodology, Visualization, Writing – original draft preparation; JG: Investigation, Writing – review & editing.

Corresponding author

Correspondence to Magdalena Boncler.

Ethics declarations

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boncler, M., Golański, J. The study of platelet aggregation using a microtiter plate reader ‒ methodological considerations. Pharmacol. Rep 76, 328–337 (2024). https://doi.org/10.1007/s43440-024-00576-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-024-00576-7

Keywords

Navigation