Skip to main content

Advertisement

Log in

Diagnostic, prognostic, and therapeutic potential of exosomal microRNAs in renal cancer

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) arises from the tubular epithelial cells of the nephron. It has the highest mortality rate among urological cancers. There are no effective therapeutic approaches and no non-invasive biomarkers for diagnosis and follow‐up. Thus, suitable novel biomarkers and therapeutic targets are essential for improving RCC diagnosis/prognosis and treatment. Circulating exosomes such as exosomal microRNAs (Exo-miRs) provide non-invasive prognostic/diagnostic biomarkers and valuable therapeutic targets, as they can be easily isolated and quantified and show high sensitivity and specificity. Exosomes secreted by an RCC can exhibit alterations in the miRs’ profile that may reflect the cellular origin and (patho)physiological state, as a ‘‘signature’’ or ‘‘fingerprint’’ of the donor cell. It has been shown that the transportation of renal-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in RCC. The present review highlights the studies reporting tumor microenvironment-derived Exo-miRs with therapeutic potential as well as circulating Exo-miRs as potential diagnostic/prognostic biomarkers in patients with RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

BTG2:

B-cell translocation gene 2

CAFs:

Cancer-associated fibroblasts

CSS:

Cancer-specific survival

CSCs:

Cancer stem cells

ccRCC:

Clear-cell renal cell carcinoma

EMT:

Epithelial–mesenchymal transition

Exo-miRs:

Exosomal miRNAs

XPO5:

Exportin 5

ERK:

Extracellular signal-regulated kinase

5-FU:

5-Fluoro-uracil

HSPA5:

Heat‐shock protein 5

HuR:

Human antigen R

HIF1α:

Hypoxia-inducible factor-1 alpha

IGF1R:

Insulin-like growth factor-1 receptor

MSKCC:

Memorial Sloan Kettering Cancer Center

miRs:

MicroRNA

OS:

Overall survival

JAK:

Janus kinase

MSCs:

Mesenchymal stem cells

NK:

Natural killer

PI3K:

Phosphoinositide 3-kinases

PTEN:

Phosphatase and tensin homolog

PFS:

Progression-free survival

RCC:

Renal cell carcinoma

RNF43:

Ring finger protein 43

SRMs:

Small renal masses

TIMP2:

Tissue inhibitor of metalloproteinase 2

TME:

Tumor microenvironment

STAT:

Signaling transducer and activator of the transcription

SOCS4:

Suppressor of cytokine signaling 4

TNM:

Tumor size-node-metastasis

TAMs:

Tumor-associated macrophages

TCGA:

The Cancer Genome Atlas

TKI:

Tyrosine kinase inhibitors

VEGFA:

Vascular endothelial growth factor A

VEGFR2:

Vascular endothelial growth factor receptor 2

Wnt:

Wingless/integrated

References

  1. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J. 2021;134:783–91.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Williamson SR, Taneja K, Cheng L. Renal cell carcinoma staging: pitfalls, challenges, and updates. Histopathology. 2019;74:18–30.

    Article  PubMed  Google Scholar 

  3. Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23:313-26 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30:706–20.

    Article  CAS  PubMed  Google Scholar 

  5. Capitanio U, Montorsi F. Renal cancer. The Lancet. 2016;387:894–906.

    Article  Google Scholar 

  6. Greef B, Eisen T. Medical treatment of renal cancer: new horizons. Br J Cancer. 2016;115:505–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Kurdi HS, Abdul-Hadi SY. Anti-cancer effect of taxol extracted from Schizophyllum radiatum against SKOV-3 cell line. J Carcinog. 2023;22(1).

  8. Dabestani S, Thorstenson A, Lindblad P, Harmenberg U, Ljungberg B, Lundstam S. Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: a population-based study. World J Urol. 2016;34:1081–6.

    Article  PubMed  Google Scholar 

  9. Wang X, Wang T, Chen C, Wu Z, Bai P, Li S, et al. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma. J Cell Biochem. 2019;120:1492–502.

    Article  CAS  PubMed  Google Scholar 

  10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  11. Battaglia M, Lucarelli G. The role of renal surgery in the era of targeted therapy: the urologist’s perspective. London, England: SAGE Publications Sage UK; 2015.

    Google Scholar 

  12. Capogrosso P, Capitanio U, La Croce G, Nini A, Salonia A, Montorsi F, et al. Follow-up after treatment for renal cell carcinoma: the evidence beyond the guidelines. Eur Urol Focus. 2016;1:272–81.

    Article  PubMed  Google Scholar 

  13. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin Z, Yu M, Ma T, Zhang C, Huang S, Karimzadeh MR, et al. Mechanisms underlying low-clinical responses to PD-1/PD-L1 blocking antibodies in immunotherapy of cancer: a key role of exosomal PD-L1. J Immunother Cancer. 2021;9:e001698.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tavasolian F, Moghaddam AS, Rohani F, Abdollahi E, Janzamin E, Momtazi-Borojeni AA, et al. Exosomes: effectual players in rheumatoid arthritis. Autoimmun Rev. 2020;19:102511.

    Article  CAS  PubMed  Google Scholar 

  16. Tavasolian F, Hosseini AZ, Rashidi M, Soudi S, Abdollahi E, Momtazi-Borojeni AA, et al. The impact of immune cell-derived exosomes on immune response initiation and immune system function. Curr Pharm Des. 2021;27:197–205.

    Article  CAS  PubMed  Google Scholar 

  17. Moghaddam AS, Afshari JT, Esmaeili S-A, Saburi E, Joneidi Z, Momtazi-Borojeni AA. Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis. 2019;285:1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Moghiman T, Barghchi B, Esmaeili S-A, Shabestari MM, Tabaee SS, Momtazi-Borojeni AA. Therapeutic angiogenesis with exosomal microRNAs: an effectual approach for the treatment of myocardial ischemia. Heart Fail Rev. 2021;26:205–13.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou R, Wang L, Zhao G, Chen D, Song X, Momtazi-Borojeni AA, et al. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure: mega bio-roles of a nano bio-particle. IUBMB Life. 2020;72:2546–62.

    Article  CAS  PubMed  Google Scholar 

  20. Rao D-Y, Huang D-F, Si M-Y, Lu H, Tang Z-X, Zhang Z-X. Role of exosomes in non-small cell lung cancer and EGFR-mutated lung cancer. Front Immunol. 2023;14:1142539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu D, Li X, Zeng B, Zhao Q, Chen H, Zhang Y, et al. Exosomal microRNA-4535 of melanoma stem cells promotes metastasis by inhibiting autophagy pathway. Stem Cell Rev. 2023;19:155–69.

    Article  CAS  Google Scholar 

  22. Maleki M, Golchin A, Javadi S, Khelghati N, Morovat P, Asemi Z, et al. Role of exosomal miRNA in chemotherapy resistance of Colorectal cancer: A systematic review. Chem Biol Drug Des. 2023;101:1096–112.

    Article  CAS  PubMed  Google Scholar 

  23. Qin T, Chen F, Zhu J, Ding Y, Zhang Q. Advances in exosomal microRNAs and proteins in ovarian cancer diagnosis, prognosis, and treatment. Curr Mol Med. 2023. https://doi.org/10.2174/1566524022666220628160009.

    Article  PubMed  Google Scholar 

  24. Fang X, Lan H, Jin K, Qian J. Pancreatic cancer and exosomes: role in progression, diagnosis, monitoring, and treatment. Front Oncol. 2023;13:1149551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He J, Yang L, Zhou N, Zu L, Xu S. The role and underlying mechanisms of tumour-derived exosomes in lung cancer metastasis. Curr Opin Oncol. 2023;35:46–53.

    Article  CAS  PubMed  Google Scholar 

  26. Austen J, Bronte E. Oncogenic signaling pathways in carcinogenesis. J Carcinog. 2023;22(1).

  27. Omar A. Role of epigenetics alternations in carcinogenesis. J Carcinog. 2023;22(1).

  28. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang Z, Li D, Hou S, Zhu X. The cancer exosomes: clinical implications, applications and challenges. Int J Cancer. 2020;146:2946–59.

    Article  CAS  PubMed  Google Scholar 

  32. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10:619–24.

    Article  CAS  PubMed  Google Scholar 

  33. Zomer A, Maynard C, Verweij Frederik J, Kamermans A, Schäfer R, Beerling E, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161:1046–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song W, Chen Y, Zhu G, Xie H, Yang Z, Li L. Exosome-mediated miR-9-5p promotes proliferation and migration of renal cancer cells both in vitro and in vivo by targeting SOCS4. Biochem Biophys Res Commun. 2020;529:1216–24.

    Article  CAS  PubMed  Google Scholar 

  35. Li DY, Lin FF, Li GP, Zeng FC. Exosomal microRNA-15a from ACHN cells aggravates clear cell renal cell carcinoma via the BTG2/PI3K/AKT axis. Kaohsiung J Med Sci. 2021;37:973–82.

    Article  CAS  PubMed  Google Scholar 

  36. Sima J, Zhang B, Sima XY, Mao YX. Overexpression of BTG2 suppresses growth, migration, and invasion of human renal carcinoma cells in vitro. Neoplasma. 2016;63:385–93.

    Article  CAS  PubMed  Google Scholar 

  37. Xu Z, Wang Y, Xiong J, Cui F, Wang L, Peng H. NUSAP1 knockdown inhibits cell growth and metastasis of non-small-cell lung cancer through regulating BTG2/PI3K/Akt signaling. J Cell Physiol. 2020;235:3886–93.

    Article  CAS  PubMed  Google Scholar 

  38. Fan D, Liu Q, Wu F, Liu N, Qu H, Yuan Y, et al. Prognostic significance of PI3K/AKT/mTOR signaling pathway members in clear cell renal cell carcinoma. PeerJ. 2020;8:e9261.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xuan Z, Chen C, Tang W, Ye S, Zheng J, Zhao Y, et al. TKI-Resistant renal cancer secretes low-level exosomal miR-549a to induce vascular permeability and angiogenesis to promote tumor metastasis. Front Cell Dev Biol. 2021;9:689947.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gani IH, Al-Obaidi Z. Molecular docking studies of tyrosine kinase inhibitors: Exemplified protocol to advance pharmaceutical education in medicinal chemistry. Pharm Educ. 2022;22:110–4.

    Article  Google Scholar 

  41. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18:99–115.

    Article  CAS  PubMed  Google Scholar 

  43. Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer. 2020;146:895–905.

    Article  CAS  PubMed  Google Scholar 

  44. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    Article  CAS  PubMed  Google Scholar 

  45. Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer. 2017;16:1–10.

    Article  Google Scholar 

  46. Qin X, Guo H, Wang X, Zhu X, Yan M, Wang X, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol. 2019;20:1–21.

    Article  Google Scholar 

  47. Liu Y, Fu W, Cao X, Li S, Xiong T, Zhang X, et al. Delivery of miR-224-5p by exosomes from cancer-associated fibroblasts potentiates progression of clear cell renal cell carcinoma. Comput Math Methods Med. 2021;2021:1–9.

    Google Scholar 

  48. Ding M, Zhao X, Chen X, Diao W, Kan Y, Cao W, et al. Cancer-associated fibroblasts promote the stemness and progression of renal cell carcinoma via exosomal miR-181d-5p. Cell Death Discov. 2022;8:439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fendler A, Bauer D, Busch J, Jung K, Wulf-Goldenberg A, Kunz S, et al. Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat Commun. 2020;11:929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsukiyama T, Zou J, Kim J, Ogamino S, Shino Y, Masuda T, et al. A phospho-switch controls RNF43-mediated degradation of Wnt receptors to suppress tumorigenesis. Nat Commun. 2020;11:4586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marei H, Tsai WK, Kee YS, et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature. 2022;610,7930:182–9.

    Article  Google Scholar 

  52. Alsaab HO, Sau S, Alzhrani RM, Cheriyan VT, Polin LA, Vaishampayan U, et al. Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials. 2018;183:280–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4:71–8.

    Article  CAS  PubMed  Google Scholar 

  54. Dannenmann SR, Thielicke J, Stöckli M, Matter C, Von Boehmer L, Cecconi V, et al. Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma. Oncoimmunology. 2013;2:e23562.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xu L, Zhu Y, Chen L, An H, Zhang W, Wang G, et al. Prognostic value of diametrically polarized tumor-associated macrophages in renal cell carcinoma. Ann Surg Oncol. 2014;21:3142–50.

    Article  PubMed  Google Scholar 

  56. Gu W, Gong L, Wu X, Yao X. Hypoxic TAM-derived exosomal miR-155-5p promotes RCC progression through HuR-dependent IGF1R/AKT/PI3K pathway. Cell Death Discov. 2021;7:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lal P, Cerofolini L, D’Agostino VG, Zucal C, Fuccio C, Bonomo I, et al. Regulation of HuR structure and function by dihydrotanshinone-I. Nucleic Acids Res. 2017;45:9514–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu Q, Zhao E, Geng B, Gao S, Yu H, He X, et al. Tumor-associated macrophage-derived exosomes transmitting miR-193a-5p promote the progression of renal cell carcinoma via TIMP2-dependent vasculogenic mimicry. Cell Death Dis. 2022;13:382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xiang T, Lin Y-X, Ma W, Zhang H-J, Chen K-M, He G-P, et al. Vasculogenic mimicry formation in EBV-associated epithelial malignancies. Nat Commun. 2018;9:5009.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Williamson SC, Metcalf RL, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M, Oliver FJ. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer. 2017;16:1–14.

    Article  Google Scholar 

  62. Sun T, Sun BC, Zhao XL, Zhao N, Dong XY, Che N, et al. Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology. 2011;54:1690–706.

    Article  CAS  PubMed  Google Scholar 

  63. Yang JP, Liao YD, Mai DM, Xie P, Qiang YY, Zheng LS, et al. Tumor vasculogenic mimicry predicts poor prognosis in cancer patients: a meta-analysis. Angiogenesis. 2016;19:191–200.

    Article  CAS  PubMed  Google Scholar 

  64. Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72:4111–26.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Z, Hu J, Ishihara M, Sharrow AC, Flora K, He Y, et al. The miRNA-21-5p payload in exosomes from M2 macrophages drives tumor cell aggression via PTEN/Akt signaling in renal cell carcinoma. Int J Mol Sci. 2022;23:3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liang X, Qin C, Yu G, Guo X, Cheng A, Zhang H, et al. Circular RNA circRAB31 acts as a miR-885-5p sponge to suppress gastric cancer progression via the PTEN/PI3K/AKT pathway. Mol Ther Oncolytics. 2021;23:501–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng C, Tang F, Min L, Hornicek F, Duan Z, Tu C. PTEN in osteosarcoma: Recent advances and the therapeutic potential. BBA-REV CANCER. 2020;1874:188405.

    CAS  Google Scholar 

  68. Yang B, Feng X, Liu H, Tong R, Wu J, Li C, et al. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene. 2020;39:6529–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li J, Li C, Li H, Zhang T, Hao X, Chang J, et al. MicroRNA-30a-5p suppresses tumor cell proliferation of human renal cancer via the MTDH/PTEN/AKT pathway. Int J Mol Med. 2018;41:1021–9.

    CAS  PubMed  Google Scholar 

  70. Song J, Yang P, Li X, Zhu X, Liu M, Duan X, et al. Esophageal cancer-derived extracellular vesicle miR-21-5p contributes to EMT of ESCC cells by disorganizing macrophage polarization. Cancers (Basel). 2021;13:4122.

    Article  CAS  PubMed  Google Scholar 

  71. Lv D, Bi Q, Li Y, Deng J, Wu N, Hao S, et al. Long non-coding RNA MEG3 inhibits cell migration and invasion of non-small cell lung cancer cells by regulating the miR-21-5p/PTEN axis. Mol Med Report. 2021. https://doi.org/10.3892/mmr.2021.11830.

    Article  Google Scholar 

  72. Koren E, Fuchs Y. The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat. 2016;28:1–12.

    Article  PubMed  Google Scholar 

  73. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011;71:5346–56.

    Article  CAS  PubMed  Google Scholar 

  74. Wang L, Yang G, Zhao D, Wang J, Bai Y, Peng Q, et al. CD103-positive CSC exosome promotes EMT of clear cell renal cell carcinoma: role of remote MiR-19b-3p. Mol Cancer. 2019;18:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nieto MA, Huang RYJ, Jackson RA, Thiery JP. EMT 2016. Cell. 2016;166:21–45.

    Article  CAS  PubMed  Google Scholar 

  76. Syn N, Wang L, Sethi G, Thiery J-P, Goh B-C. Exosome-mediated metastasis: from epithelial–mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37:606–17.

    Article  CAS  PubMed  Google Scholar 

  77. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mostoslavsky R, Bardeesy N. Reprogramming enhancers to drive metastasis. Cell. 2017;170:823–5.

    Article  CAS  PubMed  Google Scholar 

  79. Maumus M, Jorgensen C, Noël D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie. 2013;95:2229–34.

    Article  CAS  PubMed  Google Scholar 

  80. Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79.

    Article  CAS  PubMed  Google Scholar 

  81. Li D, Lin F, Li G, Zeng F. Exosomes derived from mesenchymal stem cells curbs the progression of clear cell renal cell carcinoma through T-cell immune response. Cytotechnology. 2021;73:593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ragusa S, Prat-Luri B, González-Loyola A, Nassiri S, Squadrito ML, Guichard A, et al. Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice. J Clin Invest. 2020;130:1199–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Deng H, Kan A, Lyu N, Mu L, Han Y, Liu L, et al. Dual vascular endothelial growth factor receptor and fibroblast growth factor receptor inhibition elicits antitumor immunity and enhances programmed cell death-1 checkpoint blockade in hepatocellular carcinoma. Liver cancer. 2020;9:338–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li M, Li L, Zheng J, Li Z, Li S, Wang K, et al. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer. 2023;22:1–51.

    Article  Google Scholar 

  85. Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Stat Med. 2012;31:2973–84.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Street J, Koritzinsky E, Glispie D, Star R, Yuen P. Urine exosomes: an emerging trove of biomarkers. Adv Clin Chem: Elsevier. 2017;78:103–22.

    Article  CAS  Google Scholar 

  87. Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9:9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nik Mohamed Kamal N, Shahidan WNS. Non-exosomal and exosomal circulatory MicroRNAs: which are more valid as biomarkers? Front Pharmacol. 2019;10:1500.

    Article  PubMed  Google Scholar 

  89. Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip Rev RNA. 2012;3:286–93.

    Article  CAS  PubMed  Google Scholar 

  90. Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol. 2013;8:1156–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Endzeliņš E, Berger A, Melne V, Bajo-Santos C, Soboļevska K, Ābols A, et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer. 2017;17:730.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE. 2012;7:e30679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lv L-L, Cao Y, Liu D, Xu M, Liu H, Tang R-N, et al. Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery. Int J Biol Sci. 2013;9:1021.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Song S, Long M, Yu G, Cheng Y, Yang Q, Liu J, et al. Urinary exosome miR-30c-5p as a biomarker of clear cell renal cell carcinoma that inhibits progression by targeting HSPA5. J Cell Mol Med. 2019;23:6755–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang C, Cai L, Liu J, Wang G, Li H, Wang X, et al. MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression. Cell Physiol Biochem. 2017;43:2405–19.

    Article  CAS  PubMed  Google Scholar 

  96. Cao JM, Li GZ, Han M, Xu HL, Huang KM. MiR-30c-5p suppresses migration, invasion and epithelial to mesenchymal transition of gastric cancer via targeting MTA1. Biomed Pharmacother. 2017;93:554–60.

    Article  CAS  PubMed  Google Scholar 

  97. Pfaffenbach KT, Lee AS. The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol. 2011;23:150–6.

    Article  CAS  PubMed  Google Scholar 

  98. Chang Y-W, Chen H-A, Tseng C-F, Hong C-C, Ma J-T, Hung M-C, et al. De-acetylation and degradation of HSPA5 is critical for E1A metastasis suppression in breast cancer cells. Oncotarget. 2014;5:10558.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chen H-A, Chang Y-W, Tseng C-F, Chiu C-F, Hong C-C, Wang W, et al. E1A-mediated inhibition of HSPA5 suppresses cell migration and invasion in triple-negative breast cancer. Ann Surg Oncol. 2015;22:889–98.

    Article  PubMed  Google Scholar 

  100. Luo X, Yao J, Nie P, Yang Z, Feng H, Chen P, et al. FOXM1 promotes invasion and migration of colorectal cancer cells partially dependent on HSPA5 transactivation. Oncotarget. 2016;7:26480.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chang Y, Tseng C, Wang M, Chang W, Lee C, Chen L, et al. Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene. 2016;35:1517–28.

    Article  CAS  PubMed  Google Scholar 

  102. Butz H, Nofech-Mozes R, Ding Q, Khella HW, Szabó PM, Jewett M, et al. Exosomal microRNAs are diagnostic biomarkers and can mediate cell–cell communication in renal cell carcinoma. Eur Urol Focus. 2016;2:210–8.

    Article  PubMed  Google Scholar 

  103. Zhang W, Ni M, Su Y, Wang H, Zhu S, Zhao A, et al. MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur Urol Focus. 2018;4:412–9.

    Article  PubMed  Google Scholar 

  104. Shigoka M, Tsuchida A, Matsudo T, Nagakawa Y, Saito H, Suzuki Y, et al. Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol Int. 2010;60:351–7.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang G, Zhou H, Xiao H, Liu Z, Tian H, Zhou T. MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci. 2014;59:98–107.

    Article  CAS  PubMed  Google Scholar 

  106. Lu C, Shan Z, Hong J, Yang L. MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/AKT signaling pathway in non-small cell lung cancer metastasis. Int J Oncol. 2017;51:235–44.

    Article  CAS  PubMed  Google Scholar 

  107. Chamorro-Jorganes A, Araldi E, Penalva LO, Sandhu D, Fernández-Hernando C, Suárez Y. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Atertio Thromb Vasc Biol. 2011;31:2595–606.

    Article  CAS  Google Scholar 

  108. Sun YP, Lu F, Han XY, Ji M, Zhou Y, Zhang AM, et al. MiR-424 and miR-27a increase TRAIL sensitivity of acute myeloid leukemia by targeting PLAG1. Oncotarget. 2016;7:25276.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ji X, Lu Y, Tian H, Meng X, Wei M, Cho WC. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother. 2019;114:108800.

    Article  CAS  PubMed  Google Scholar 

  110. Xiao C-T, Lai W-J, Zhu W-A, Wang H. MicroRNA derived from circulating exosomes as noninvasive biomarkers for diagnosing renal cell carcinoma. J Thorac Oncol. 2020;13:10765.

    CAS  Google Scholar 

  111. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. The Lancet. 2009;373:1119–32.

    Article  CAS  Google Scholar 

  112. Zisman A, Pantuck AJ, Figlin RA, Belldegrun AS. Validation of the ucla integrated staging system for patients with renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19:3792–3.

    Article  CAS  Google Scholar 

  113. Li H, Samawi H, Heng DYC. The use of prognostic factors in metastatic renal cell carcinoma. Urol Oncol. 2015;33(12):509–16.

    Article  PubMed  Google Scholar 

  114. Lohse CM, Gupta S, Cheville JC. Outcome prediction for patients with renal cell carcinoma. Semin Diagn Pathol. 2015;32(2):172–83.

    Article  PubMed  Google Scholar 

  115. Oldenhuis C, Oosting SF, Gietema JA, De Vries EGE. Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer. 2008;44:946–53.

    Article  CAS  PubMed  Google Scholar 

  116. Cannistra SA. When is a “prognostic factor” really prognostic? J Clin Oncol. 2000; 3745–7.

  117. Teixeira AL, Dias F, Ferreira M, Gomes M, Santos JI, Lobo F, et al. Combined influence of EGF+ 61G> A and TGFB+ 869T> C functional polymorphisms in renal cell carcinoma progression and overall survival: the link to plasma circulating MiR-7 and MiR-221/222 expression. PLoS ONE. 2015;10:e0103258.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Malouf GG, Su X, Yao H, Gao J, Xiong L, He Q, et al. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes. Clin Cancer Res. 2014;20:4129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dimitrieva S, Schlapbach R, Rehrauer H. Prognostic value of cross-omics screening for kidney clear cell renal cancer survival. Biol Direct. 2016;11:1–15.

    Article  Google Scholar 

  120. Takagawa Y, Gen Y, Muramatsu T, Tanimoto K, Inoue J, Harada H, et al. miR-1293, a Candidate for miRNA-based cancer therapeutics, simultaneously targets BRD4 and the DNA repair pathway. Mol Ther. 2020;28:1494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li P, Ma Y, Wang Y, Chen T, Wang H, Chu H, et al. Identification of miR-1293 potential target gene: TIMP-1. Mol Cell Biochem. 2013;384:1–6.

    Article  CAS  PubMed  Google Scholar 

  122. Dias F, Teixeira AL, Nogueira I, Morais M, Maia J, Bodo C, et al. Extracellular vesicles enriched in hsa-miR-301a-3p and hsa-miR-1293 dynamics in clear cell renal cell carcinoma patients: potential biomarkers of metastatic disease. Cancers (Basel). 2020;12:1450.

    Article  CAS  PubMed  Google Scholar 

  123. Kawata N, Yamaguchi K, Igarashi T, Takahashi S. TIMP-1 as well as microvessel invasion and high nuclear grade is a significant determinant factor for extension of tumor diameter in localized RCC. J Oncol. 2016;2016:1–5.

    Article  Google Scholar 

  124. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Correction: hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 2020;80:922.

    Article  PubMed  Google Scholar 

  125. Maehama T, Taylor GS, Dixon JE. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001;70:247–79.

    Article  CAS  PubMed  Google Scholar 

  126. Geva GA, Gielchinsky I, Aviv N, Max KE, Gofrit ON, Gur-Wahnon D, et al. Urine cell-free microRNA as biomarkers for transitional cell carcinoma. BMC Res Notes. 2017;10:1–5.

    Article  Google Scholar 

  127. Fan C, Zhao C, Wang F, Li S, Wang J. Significance of PTEN mutation in cellular process, prognosis, and drug selection in clear cell renal cell carcinoma. Front Oncol. 2019;9:357.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Guo S, Zhai Y, Wang WL, Ma F. Expression and significance of a new tumor suppression gene PTEN in primary renal cell carcinoma. Ai Zheng= Aizheng= Chin J Cancer. 2002;21:582–7.

    Google Scholar 

  129. Akbani R, Ng PKS, Werner HM, Shahmoradgoli M, Zhang F, Ju Z, et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun. 2014;5:1–15.

    Article  Google Scholar 

  130. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang W-C, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Du M, Giridhar KV, Tian Y, Tschannen MR, Zhu J, Huang C-C, et al. Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget. 2017;8:63703.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Liu Y, Yin B, Zhang C, Zhou L, Fan J. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc. Biochem Biophys Res Commun. 2012;417:371–5.

    Article  CAS  PubMed  Google Scholar 

  133. Peng J, Mo R, Ma J, Fan J. let-7b and let-7c are determinants of intrinsic chemoresistance in renal cell carcinoma. World J Surg Oncol. 2015;13:1–8.

    Article  Google Scholar 

  134. Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol. 2011;29:367–73.

    Article  CAS  PubMed  Google Scholar 

  135. Cui R, Kim T, Fassan M, Meng W, Sun H-L, Jeon Y-J, et al. MicroRNA-224 is implicated in lung cancer pathogenesis through targeting caspase-3 and caspase-7. Oncotarget. 2015;6:21802.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Liao W-T, Li T-T, Wang Z-G, Wang S-Y, He M-R, Ye Y-P, et al. microRNA-224 promotes cell proliferation and tumor growth in human colorectal cancer by repressing PHLPP1 and PHLPP2. Clin Cancer Res. 2013;19:4662–72.

    Article  CAS  PubMed  Google Scholar 

  137. Amankwatia E, Chakravarty P, Carey F, Weidlich S, Steele R, Munro A, et al. MicroRNA-224 is associated with colorectal cancer progression and response to 5-fluorouracil-based chemotherapy by KRAS-dependent and-independent mechanisms. Br J Cancer. 2015;112:1480–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Okajima W, Komatsu S, Ichikawa D, Miyamae M, Kawaguchi T, Hirajima S, et al. Circulating microRNA profiles in plasma: identification of miR-224 as a novel diagnostic biomarker in hepatocellular carcinoma independent of hepatic function. Oncotarget. 2016;7:53820.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Wang Y, Toh HC, Chow P, Chung AY, Meyers DJ, Cole PA, et al. MicroRNA-224 is up-regulated in hepatocellular carcinoma through epigenetic mechanisms. FASEB J. 2012;26:3032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li Q, Ding C, Chen C, Zhang Z, Xiao H, Xie F, et al. miR-224 promotion of cell migration and invasion by targeting Homeobox D 10 gene in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2014;29:835–42.

    Article  PubMed  Google Scholar 

  141. Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A, et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol. 2010;4:1–17.

    Article  CAS  Google Scholar 

  142. Boguslawska J, Wojcicka A, Piekielko-Witkowska A, Master A, Nauman A. MiR-224 targets the 3′ UTR of type 1 5′-iodothyronine deiodinase possibly contributing to tissue hypothyroidism in renal cancer. PLoS ONE. 2011;6:e24541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lichner Z, Mejia-Guerrero S, Ignacak M, Krizova A, Bao TT, Girgis AH, et al. Pleiotropic action of renal cell carcinoma-dysregulated miRNAs on hypoxia-related signaling pathways. Am J Pathol. 2012;180:1675–87.

    Article  CAS  PubMed  Google Scholar 

  144. Fujii N, Hirata H, Ueno K, Mori J, Oka S, Shimizu K, et al. Extracellular miR-224 as a prognostic marker for clear cell renal cell carcinoma. Oncotarget. 2017;8:109877.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chakraborty S, Balan M, Sabarwal A, Choueiri TK, Pal S. Metabolic reprogramming in renal cancer: Events of a metabolic disease. BBA-REV CANCER. 2021;1876:188559.

    CAS  Google Scholar 

  146. Triplitt CL. Understanding the kidneys’ role in blood glucose regulation. Am J Manag Care. 2012;18:S11.

    PubMed  Google Scholar 

  147. Courtney KD, Bezwada D, Mashimo T, Pichumani K, Vemireddy V, Funk AM, et al. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab. 2018;28:793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hakimi AA, Reznik ED, Lee C-H, Creighton CJ, Brannon AR, Luna A, et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell. 2016;29:104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wettersten HI, Hakimi AA, Morin D, Bianchi C, Johnstone ME, Donohoe DR, et al. Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res. 2015;75:2541–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shen C, Kaelin Jr WG. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2013;23(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  152. Kaelin WG Jr. The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res. 2004;10:6290S-S6295.

    Article  CAS  PubMed  Google Scholar 

  153. Kaelin WG Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002;2:673–82.

    Article  CAS  PubMed  Google Scholar 

  154. Hu CJ, Wang L-Y, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol. 2003;23:9361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.

    Article  PubMed  Google Scholar 

  156. Schönenberger D, Harlander S, Rajski M, Jacobs RA, Lundby A-K, Adlesic M, et al. Formation of renal cysts and tumors in Vhl/Trp53-deficient mice requires HIF1α and HIF2α. Cancer Res. 2016;76:2025–36.

    Article  PubMed  Google Scholar 

  157. Gao P, Sun L, He X, Cao Y, Zhang H. MicroRNAs and the warburg effect: new players in an old arena. Curr Gene Ther. 2012;12:285–91.

    Article  CAS  PubMed  Google Scholar 

  158. Ghosh AK, Shanafelt TD, Cimmino A, Taccioli C, Volinia S, Liu CG, et al. Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood J Am Soc Hematol. 2009;113:5568–74.

    CAS  Google Scholar 

  159. Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest. 2010;120:4141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Project was supported by the City and College Strategic Cooperation Project of Nanchong (No.18SXHZ0576) as well as the Scientific Research Foundation of Sichuan Provincial Health Commission, Grant/Award (No. 21PJ103).

Author information

Authors and Affiliations

Authors

Contributions

BL and PZ contributed to the conception and design of the work. XY and ZD were contributors to the database search and preparing the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Bo Liao.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Du, Z., Zhu, P. et al. Diagnostic, prognostic, and therapeutic potential of exosomal microRNAs in renal cancer. Pharmacol. Rep 76, 273–286 (2024). https://doi.org/10.1007/s43440-024-00568-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-024-00568-7

Keywords

Navigation