Skip to main content
Log in

Drug repositioning: diacerein as a new therapeutic approach in a mice model of sciatic nerve injury

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Peripheral nerve injuries negatively impact the quality of life of patients, with no effective treatment available that accelerates sensorimotor recovery and promotes functional improvement and pain relief. The aim of this study was to evaluate the effects of diacerein (DIA) in an experimental mice model of sciatic nerve crush.

Method

In this study, male Swiss mice were used, randomly separated into six groups as follows: FO (false-operated + vehicle); FO + DIA (false-operated + diacerein 30 mg/kg); SNI (sciatic nerve injury + vehicle); SNI + DIA in doses of 3, 10 and 30 mg/kg (sciatic nerve injury + treatment with diacerein in doses of 3–30 mg/kg). DIA or vehicle was administered 24 h after the surgical procedure, intragastrically, twice a day. The lesion of the right sciatic nerve was generated by crush.

Results

We found that the treatment of animals with DIA accelerated sensorimotor recovery of the animal. In addition, animals in the sciatic nerve injury + vehicle (SNI) group showed hopelessness, anhedonia, and lack of well-being, which were significantly inhibited by DIA treatment. The SNI group showed a reduction in the diameters of nerve fibers, axons, and myelin sheaths, while DIA treatment recovered all these parameters. In addition, the treatment of animals with DIA prevented an increase the levels of interleukin (IL)-1β and a reduction in the levels of the brain-derived growth factor (BDNF).

Conclusions

Treatment with DIA reduces hypersensitivity and depression like behaviors in animals. Furthermore, DIA promotes functional recovery and regulates IL-1β and BDNF concentrations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ANOVA:

Analysis of variance

AUC:

Area under the curve

BDNF:

Brain-derived neurotrophic fator

CEUA:

Ethics committee for using animals in research

DAX:

Diameter of the axon

DBM:

Diameter of the myelin sheath

DFN:

Diameter of the nerve fiber

DIA:

Diacerein

ELISA:

Enzyme-linked immunosorbent assay

EPL:

Measurements length of the paw of the experimental side

ETS:

Measurements total spread of the fingers of the experimental side

NF:

Nerve fibers

FO:

False-operated

HE:

Hematoxylin and eosin

HL:

Horizontal ladder

IL:

Interleukin

IL–1β:

Interleuckin 1 beta

LAMEB:

Multiuser laboratory of biology studies

MMPs:

Metalloprotease

MMP-2:

Metalloprotease 2

MMP-9:

Metalloprotease 9

N/mm2 :

Density of nerve fibers

NPL:

Measurements length of the paw of the normal side

NTS:

Measurements total spread of the fingers of the normal side

OA:

Osteoarthritis

PBS:

Phosphate buffer

PE:

Perineurium

PL:

Print length

PNIs:

Peripheral nerve injuries

SCs:

Schwann cells

SEM:

Standard error of the mean

SFI:

Sciatic functional index

SNI:

Sciatic nerve injury

TNF-α:

Tumor necrosis factor alpha

TS:

Total spread

UFSC:

Federal University of Santa Catarina

WD:

Wallerian degeneration

References

  1. Osborne NR, Anastakis DJ, Davis KD. Peripheral nerve injuries, pain, and neuroplasticity. J Hand Ther. 2018;31:184–94. https://doi.org/10.1016/j.jht.2018.01.011.

    Article  PubMed  Google Scholar 

  2. DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 2015;302:174–203. https://doi.org/10.1016/j.neuroscience.2014.09.027.

    Article  CAS  PubMed  Google Scholar 

  3. Wojtkiewicz DM, Saunders J, Domeshek L, Novak CB, Kaskutas V, Mackinnon SE. Social impact of peripheral nerve injuries. Hand (NY). 2015;10:161–7. https://doi.org/10.1007/s11552-014-9692-0.

    Article  Google Scholar 

  4. Da Silva MD, Guginski G, Sato KL, Sanada LS, Sluka KA, Santos A. Persistent pain induces mood problems and memory loss by the involvement of cytokines, growth factors, and supraspinal glial cells. Brain Behav Immun Health. 2020;7:1–11. https://doi.org/10.1016/j.bbih.2020.100118.

    Article  Google Scholar 

  5. Attal N, Bouhassira D. Pharmacotherapy of neuropathic pain: which drugs, which treatment algorithms? Pain. 2015;156:104–14. https://doi.org/10.1097/01.j.pain.0000460358.01998.15.

    Article  Google Scholar 

  6. Hussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S, et al. Current status of therapeutic approaches against peripheral nerve injuries: a detailed story from injury to recovery. Int J Biol Sci. 2020;16:116–34. https://doi.org/10.7150/ijbs.35653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Valat JP, Genevay S, Marty M, Rozenberg S, Koes B. Sciatica. Best Pract Res Clin Rheumatol. 2010;24:241–52. https://doi.org/10.1016/j.berh.2009.11.005.

    Article  PubMed  Google Scholar 

  8. Mohammad Jafari R, Sheibani M, Nezamoleslami S, Shayesteh S, Jand Y, Dehpour AR. Drug repositioning: a review. JIMC. 2018;1(1):7–10.

    Google Scholar 

  9. Martel-Pelletier J, Pelletier JP. Effects of diacerein at the molecular level in the osteoarthritis disease process. Ther Adv Musculoskelet Dis. 2010;2:95–104. https://doi.org/10.1177/1759720X09359104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Panova E, Jones G. Benefit-risk assessment of diacerein in the treatment of osteoarthritis. Drug Saf. 2015;38:245–52. https://doi.org/10.1007/s40264-015-0266-z.

    Article  CAS  PubMed  Google Scholar 

  11. Pelletier JP, Yaron M, Haraoui B, Cohen P, Nahir MA, Choquette D, et al. Efficacy and safety of diacerein in osteoarthritis of the knee: a double-blind, placebo-controlled trial The Diacerein Study Group. Arthritis Rheum. 2000;43:2339–48. https://doi.org/10.1002/1529-0131(200010)43:10%3c2339::AID-ANR23%3e3.0.CO;2-P.

    Article  CAS  PubMed  Google Scholar 

  12. Kongtharvonskul J, Anothaisintawee T, McEvoy M, Attia J, Woratanarat P, Thakkinstian A. Efficacy and safety of glucosamine, diacerein, and NSAIDs in osteoarthritis knee: a systematic review and network meta-analysis. Eur J Med Res. 2015;20:1–11. https://doi.org/10.1186/s40001-015-0115-7.

    Article  CAS  Google Scholar 

  13. Pavelka K, Bruyère O, Cooper C, Kanis JA, Leeb BF, Maheu E, et al. Diacerein: benefits, risks and place in the management of osteoarthritis an opinion-based report from the ESCEO. Drugs Aging. 2016;33:75–85. https://doi.org/10.1007/s40266-016-0347-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gadott VM, Martins DF, Pinto HF, Oliveira G, Kaster MP, Quintão NL, Santos AR. Diacerein decreases visceral pain through inhibition of glutamatergic neurotransmission and cytokine signaling in mice. Pharmacol Biochem Behav. 2012;102(4):549–54. https://doi.org/10.1016/j.pbb.2012.06.018.

    Article  CAS  Google Scholar 

  15. Quintão N, Medeiros R, Santos A, Campos MM, Calixto JB. The effects of diacerhein on mechanical allodynia in inflammatory and neuropathic models of nociception in mice. Anesth Analg. 2005;101:1763–9. https://doi.org/10.1213/01.ane.0000184182.03203.61.

    Article  PubMed  Google Scholar 

  16. Da Silva MD, Cidral-Filho FJ, Winkelmann-Duarte EC, Cargnin-Ferreira E, Calixto JB, Dutra RC, Santos A. Diacerein reduces joint damage, pain behavior and inhibits transient receptor potential vanilloid 1, matrix metalloproteinase and glial cells in rat spinal cord. Int J Rheum Dis. 2017;20:1337–49. https://doi.org/10.1111/1756-185X.12741.

    Article  CAS  PubMed  Google Scholar 

  17. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10. https://doi.org/10.1016/0304-3959(83)90201-4.

    Article  PubMed  Google Scholar 

  18. Bridge PM, Ball DJ, Mackinnon SE, Nakao Y, Brandt K, Hunter DA, Hertl C. Nerve crush injuries-a model for axonotmesis. Exp Neurol. 1994;127:284–90. https://doi.org/10.1006/exnr.1994.1104.

    Article  CAS  PubMed  Google Scholar 

  19. Kim W, Kim MJ, Go D, Min BI, Na HS, Kim SK. Combined effects of bee venom acupuncture and morphine on oxaliplatin-induced neuropathic pain in mice. Toxins. 2016;8:33. https://doi.org/10.3390/toxins8020033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uhelski ML, Khasabova IA, Simone DA. Inhibition of anandamide hydrolysis attenuates nociceptor sensitization in a murine model of chemotherapy-induced peripheral neuropathy. J Neurophysiol. 2015;113:1501–10. https://doi.org/10.1152/jn.00692.2014.

    Article  CAS  PubMed  Google Scholar 

  21. Attal N, Jazat F, Kayser V, Guilbaud G. Further evidence for “pain-related” behaviours in a model of unilateral peripheral mononeuropathy. Pain. 1990;41:235–51. https://doi.org/10.1016/0304-3959(90)90022-6.

    Article  CAS  PubMed  Google Scholar 

  22. Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain. 2004;109:150–61. https://doi.org/10.1016/j.pain.2004.01.029.

    Article  CAS  PubMed  Google Scholar 

  23. Nucci C, Mazzardo-Martins L, Stramosk J, Brethanha LC, Pizzolatti MG, Santos AR, et al. Oleaginous extract from the fruits Pterodon pubescens Benth induces antinociception in animal models of acute and chronic pain. J Ethnopharmacol. 2012;143:170–8. https://doi.org/10.1016/j.jep.2012.06.020.

    Article  PubMed  Google Scholar 

  24. Baptista AF, Gomes JR, Oliveira JT, Santos SM, Vannier-Santos MA, Martinez AM. A new approach to assess function after sciatic nerve lesion in the mouse-adaptation of the sciatic static index. J Neurosci Methods. 2007;161:259–64. https://doi.org/10.1016/j.jneumeth.2006.11.016.

    Article  PubMed  Google Scholar 

  25. Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;77:634–43. https://doi.org/10.1016/0014-4886(82)90234-5.

    Article  PubMed  Google Scholar 

  26. Inserra MM, Bloch DA, Terris DJ. Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery. 1998;18:119–24.

    Article  CAS  PubMed  Google Scholar 

  27. Metz GA, Whishaw IQ. The ladder rung walking task: a scoring system and its practical application. J Vis Exp. 2009;12:1–4. https://doi.org/10.3791/1204.

    Article  Google Scholar 

  28. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology. 1985;85:367–70. https://doi.org/10.1007/BF00428203.

    Article  CAS  PubMed  Google Scholar 

  29. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266(5604):730–2. https://doi.org/10.1038/266730a0.

    Article  CAS  PubMed  Google Scholar 

  30. Kremer M, Becker LJ, Barrot M, Yalcin I. How to study anxiety and depression in rodent models of chronic pain? Eur J Neurosci. 2021;53:236–70. https://doi.org/10.1111/ejn.14686.

    Article  CAS  PubMed  Google Scholar 

  31. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology. 1987;93:358–64. https://doi.org/10.1007/BF00187257.

    Article  CAS  PubMed  Google Scholar 

  32. Manouze H, Ghestem A, Poillerat V, Bennis M, Ba-M’hamed S, Benoliel JJ, et al. Effects of single cage housing on stress, cognitive, and seizure parameters in the rat and mouse pilocarpine models of epilepsy. eNeuro. 2019;6:1–23. https://doi.org/10.1523/ENEURO.0179-18.2019.

    Article  CAS  Google Scholar 

  33. Deacon RM. Assessing nest building in mice. Nat Protoc. 2006;1:1117–9. https://doi.org/10.1038/nprot.2006.170.

    Article  PubMed  Google Scholar 

  34. Kraeuter AK, Guest PC, Sarnyai Z. The nest building test in mice for assessment of general well-being. Methods Mol Biol. 2019;1916:87–91. https://doi.org/10.1007/978-1-4939-8994-2_7.

    Article  CAS  PubMed  Google Scholar 

  35. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  36. Gagnon RC, Peterson JJ. Estimation of confidence intervals for area under the curve from destructively obtained pharmacokinetic data. J Pharmacokinet Pharmacodyn. 1998;26:87–102. https://doi.org/10.1023/A:1023228925137.

    Article  CAS  Google Scholar 

  37. Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve. 2000;23:863–73. https://doi.org/10.1002/(sici)1097-4598(200006)23:6%3c863::aid-mus4%3e3.0.co;2-0.

    Article  CAS  PubMed  Google Scholar 

  38. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation. 2011;8:1–14. https://doi.org/10.1186/1742-2094-8-109.

    Article  CAS  Google Scholar 

  39. Menorca RM, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin. 2013;29:317–30. https://doi.org/10.1016/j.hcl.2013.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bobinski F, Martins DF, Bratti T, Mazzardo-Martins L, Winkelmann-Duarte EC, Guglielmo LG, Santos AR. Neuroprotective and neuroregenerative effects of low-intensity aerobic exercise on sciatic nerve crush injury in mice. Neuroscience. 2011;194:337–48. https://doi.org/10.1016/j.neuroscience.2011.07.075.

    Article  CAS  PubMed  Google Scholar 

  41. Nascimento FP, Macedo-Júnior SJ, Borges FR, Cremonese RP, Da Silva MD, Luiz-Cerutti M, et al. Thalidomide reduces mechanical hyperalgesia and depressive-like behavior induced by peripheral nerve crush in mice. Neuroscience. 2015;303:51–8. https://doi.org/10.1016/j.neuroscience.2015.06.044.

    Article  CAS  PubMed  Google Scholar 

  42. Cidral-Filho FJ, Martins DF, Moré AO, Mazzardo-Martins L, Silva MD, Cargnin-Ferreira E, Santos AR. Light-emitting diode therapy induces analgesia and decreases spinal cord and sciatic nerve tumour necrosis factor-α levels after sciatic nerve crush in mice. Eur J Pain. 2013;17:1193–204. https://doi.org/10.1002/j.1532-2149.2012.00280.x.

    Article  CAS  PubMed  Google Scholar 

  43. Gui WS, Wei X, Mai CL, Murugan M, Wu LJ, Xin WJ, et al. Interleukin-1β overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol Pain. 2016;12:1–15. https://doi.org/10.1177/1744806916646784.

    Article  CAS  Google Scholar 

  44. Lees JG, Fivelman B, Duffy SS, Makker PG, Perera CJ, Moalem-Taylor G. Cytokines in neuropathic pain and associated depression. Mod Trends Pharmacopsychiatr. 2015;30:51–66. https://doi.org/10.1159/000435932.

    Article  Google Scholar 

  45. Ren K, Torres R. Role of interleukin-1beta during pain and inflammation. Brain Res Rev. 2009;60:57–64. https://doi.org/10.1016/j.brainresrev.2008.12.020.

    Article  CAS  PubMed  Google Scholar 

  46. Kirkham B. Interleukin-1, immune activation pathways, and different mechanisms in osteoarthritis and rheumatoid arthritis. Ann Rheum Dis. 1991;50:395–400. https://doi.org/10.1136/ard.50.6.395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yaron M, Shirazi I, Yaron I. Anti-interleukin-1 effects of diacerein and rhein in human osteoarthritic synovial tissue and cartilage cultures. Osteoarthr Cartil. 1999;7:272–80. https://doi.org/10.1053/joca.1998.0201.

    Article  CAS  Google Scholar 

  48. Zhang Q, Cao DL, Zhang ZJ, Jiang BC, Gao YJ. Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice. J Neuroinflammation. 2016;13:2–13. https://doi.org/10.1186/s12974-016-0652-1.

    Article  CAS  Google Scholar 

  49. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10:1361–8. https://doi.org/10.1038/nn1992.

    Article  CAS  PubMed  Google Scholar 

  50. Uçeyler N, Sommer C. Cytokine regulation in animal models of neuropathic pain and in human diseases. Neurosci Lett. 2008;437:194–8. https://doi.org/10.1016/j.neulet.2008.03.050.

    Article  CAS  PubMed  Google Scholar 

  51. Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008;14:331–6. https://doi.org/10.1038/nm1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tamura T, Kosaka N, Ishiwa J, Sato T, Nagase H, Ito A. Rhein, an active metabolite of diacerein, down-regulates the production of pro-matrix metalloproteinases-1, -3, -9 and -13 and up-regulates the production of tissue inhibitor of metalloproteinase-1 in cultured rabbit articular chondrocytes. Osteoarthr Cartilage. 2001;9:257–63. https://doi.org/10.1053/joca.2000.0383.

    Article  CAS  Google Scholar 

  53. Tricaud N, Park HT. Wallerian demyelination: chronicle of a cellular cataclysm. Cell Mol Life Sci. 2017;74:4049–57. https://doi.org/10.1007/s00018-017-2565-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen G, Luo X, Wang W, Wang Y, Zhu F, Wang W. Interleukin-1β promotes schwann cells De-differentiation in wallerian degeneration via the c-JUN/AP-1 pathway. Front Cell Neurosci. 2019;9:304. https://doi.org/10.3389/fncel.2019.00304.

    Article  CAS  Google Scholar 

  55. Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014;2014:1–13. https://doi.org/10.1155/2014/698256.

    Article  Google Scholar 

  56. Martins DF, Martins TC, Batisti AP, Dos Santos LL, Bobinski F, Belmonte L, et al. Long-term regular eccentric exercise decreases neuropathic pain-like behavior and improves motor functional recovery in an axonotmesis mouse model: the role of insulin-like growth factor-1. Mol Neurobiol. 2018;55:6155–68. https://doi.org/10.1007/s12035-017-0829-3.

    Article  CAS  PubMed  Google Scholar 

  57. Martins DF, Mazzardo-Martins L, Gadotti VM, Nascimento FP, Lima D, Speckhann B, et al. Ankle joint mobilization reduces axonotmesis-induced neuropathic pain and glial activation in the spinal cord and enhances nerve regeneration in rats. Pain. 2011;152:2653–61. https://doi.org/10.1016/j.pain.2011.08.014.

    Article  PubMed  Google Scholar 

  58. Cobianchi S, Arbat-Plana A, Lopez-Alvarez VM, Navarro X. Neuroprotective effects of exercise treatments after injury: the dual role of neurotrophic factors. Curr Neuropharmacol. 2017;15:495–518. https://doi.org/10.2174/1570159X14666160330105132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McGregor CE, English AW. The role of BDNF in peripheral nerve regeneration: activity-dependent treatments and Val66Met. Front Cell Neurosci. 2019;12:522. https://doi.org/10.3389/fncel.2018.00522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol. 2003;27:277–324. https://doi.org/10.1385/MN:27:3:277.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang JY, Luo XG, Xian CJ, Liu ZH, Zhou XF. Endogenous BDNF is required for yelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci. 2000;12:4171–80. https://doi.org/10.1111/j.1460-9568.2000.01312.x.

    Article  CAS  PubMed  Google Scholar 

  62. Zheng J, Sun J, Lu X, Zhao P, Li K, Li L. BDNF promotes the axonal regrowth after sciatic nerve crush through intrinsic neuronal capability upregulation and distal portion protection. Neurosci Lett. 2016;621:1–8. https://doi.org/10.1016/j.neulet.2016.04.006.

    Article  CAS  PubMed  Google Scholar 

  63. Torta R, Ieraci V, Zizzi F. A review of the emotional aspects of neuropathic pain: from comorbidity to Co-pathogenesis. Pain Ther. 2017;6:11–7. https://doi.org/10.1007/s40122-017-0088-z.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lu Y, Li J, Liu Y. Depression as a mediator of quality of life in patients with neuropathic pain: A cross-sectional study. J Adv Nurs. 2019;75:2719–26. https://doi.org/10.1111/jan.14111.

    Article  PubMed  Google Scholar 

  65. Cherif F, Zouari HG, Cherif W, Hadded M, Cheour M, Damak R. Depression prevalence in neuropathic pain and its impact on the quality of life. Pain Res Manag. 2020;2020:1–8. https://doi.org/10.1155/2020/7408508.

    Article  Google Scholar 

  66. Yalcin I, Barthas F, Barrot M. Emotional consequences of neuropathic pain: insight from preclinical studies. Neurosci Biobehav Rev. 2014;47:154–64. https://doi.org/10.1016/j.neubiorev.2014.08.002.

    Article  PubMed  Google Scholar 

Download references

Funding

This article is dedicated to the memory of Prof. Dr. Adair Roberto Soares dos Santos. We are immensely grateful to Prof. Adair, a great friend and instructor, who contributed intensely to our work (Concept, idea, research design and providing facilities) and recently passed away, being deeply missed. We also thank Neuroscience Post-Graduate Program at the Federal University of Santa Catarina (UFSC), Multiuser Laboratory of Biology Studies (LAMEB/UFSC) and the Centro de Inovação e Ensaios Pré-Clínicos (CIEnP) for the support in some stages of the experiments. This study was financed in part by the Programa INCT-INOVAMED (465430/2014–7) grant; and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The graphical abstract was created using the Mind the Graph@, regularly contemplated by the author MDS.

Author information

Authors and Affiliations

Authors

Contributions

Concept/idea/research design: JK, ARSS, MDS. Writing: JK, MDS. Data collection and Data analysis: JK, TESA, SIK, LMB, GSCJ, JBF, MDS. Providing facilities/equipment and institutional liaisons: ARSS, MDS.

Corresponding author

Correspondence to Morgana Duarte da Silva.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karvat, J., Andrade, T.E.S., Kraus, S.I. et al. Drug repositioning: diacerein as a new therapeutic approach in a mice model of sciatic nerve injury. Pharmacol. Rep 75, 358–375 (2023). https://doi.org/10.1007/s43440-023-00461-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00461-9

Keywords

Navigation