Skip to main content

Advertisement

Log in

Effect of metformin on the long non-coding RNA expression levels in type 2 diabetes: an in vitro and clinical trial study

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

It has been suggested that the anti-hyperglycemic effect of metformin could be associated with its impact on long non-coding RNA (lncRNA) expression levels. Accordingly, in the current study, we evaluated the effect of metformin on the expression of H19, MEG3, MALAT1, and GAS5 in in vitro and in vivo situations.

Methods

The effect of hyperglycemia and metformin treatment on the lncRNAs expression level was evaluated in HepG2 cells. A total of 179 age- and sex-matched subjects, including 88 newly diagnosed patients with type 2 diabetes (T2D) and 91 healthy volunteers, were included in the case–control phase of the study. Moreover, 40 newly diagnosed patients participated in the study’s open-labeled non-controlled clinical trial phase. The expression levels of lncRNA in HepG2 cells and whole blood samples were determined using QRT-PCR.

Results

In vitro results showed that hyperglycemia induced H19 and MALAT1 and decreased GAS5 expression levels. Moreover, metformin decreased H19 and increased GAS5 expression in high glucose-treated cells. Case–control study findings revealed that the circulating levels of H19, MALAT1, and MEG3 were significantly elevated in T2D patients compared to the control subjects. Finally, results showed that the level of circulating H19 levels decreased while GAS5 increased in T2D patients after taking metformin for 2 months.

Conclusion

The results of the current study provided evidence that metformin could exert its effect in the treatment of T2D by altering the expression levels of H19 and GAS5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Abbreviations

BMI:

Body mass index

FBG:

Fasting blood glucose

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GAS5:

Growth arrest-specific 5

H19:

H19 imprinted maternally expressed transcript

HbA1c:

Hemoglobin A1c

HDL‐C:

High‐density lipoprotein-cholesterol

HG:

High glucose

HOMA-IR:

Homeostatic model assessment of insulin resistance

LDL-C:

Low‐density lipoprotein-cholesterol

LncRNAs:

Long non-coding RNAs

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

MEG3:

Maternally expressed 3

MET:

Metformin

miRNAs:

MicroRNAs

ncRNAs:

Non-coding RNAs

NG:

Normal glucose

T2D:

Type 2 diabetes

TC:

Total cholesterol

TG:

Triglycerides

References

  1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

    Article  Google Scholar 

  2. Franks PW. Gene × environment interactions in type 2 diabetes. Curr Diab Rep. 2011;11(6):552–61.

    Article  Google Scholar 

  3. Ghasemi H, Sabati Z, Ghaedi H, Salehi Z, Alipoor B. Circular RNAs in β-cell function and type 2 diabetes-related complications: a potential diagnostic and therapeutic approach. Mol Biol Rep. 2019;46(5):5631–43.

    Article  CAS  Google Scholar 

  4. Rezaeinejad F, Mirzaei A, Khalvati B, Sabz G, Alipoor B. Circulating expression levels of CircHIPK3 and CDR1as circular-RNAs in type 2 diabetes patients. Mol Biol Rep. 2022;49(1):131–8.

    Article  CAS  Google Scholar 

  5. Alipoor B, Nikouei S, Rezaeinejad F, Malakooti-Dehkordi S, Sabati Z, Ghasemi H. Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest. 2021;44(10):2015–41.

    Article  CAS  Google Scholar 

  6. Pope C, Mishra S, Russell J, Zhou Q, Zhong X-B. Targeting H19, an imprinted long non-coding RNA, in hepatic functions and liver diseases. Diseases. 2017;5(1):11.

    Article  Google Scholar 

  7. Zhang Y, Liu J, Lv Y, Zhang C, Guo S. LncRNA meg3 suppresses hepatocellular carcinoma in vitro and vivo studies. Am J Transl Res. 2019;11(7):4089.

    CAS  Google Scholar 

  8. Zhang N, Geng T, Wang Z, Zhang R, Cao T, Camporez JP, et al. Elevated hepatic expression of H19 long noncoding RNA contributes to diabetic hyperglycemia. JCI insight. 2018. https://doi.org/10.1172/jci.insight.120304.

    Article  Google Scholar 

  9. Zhong T, Men Y, Lu L, Geng T, Zhou J, Mitsuhashi A, et al. Metformin alters DNA methylation genome-wide via the H19/SAHH axis. Oncogene. 2017;36(17):2345–54.

    Article  CAS  Google Scholar 

  10. Saleh AA, Kasem HE, Zahran ES, El-Hefnawy SM. Cell-free long non-coding RNAs (LY86-AS1 & HCG27_201and GAS5) as biomarkers for pre-diabetes and type 2 DM in Egypt. Biochem Biophys Rep. 2020;23: 100770.

    Google Scholar 

  11. You L, Wang N, Yin D, Wang L, Jin F, Zhu Y, et al. Downregulation of long noncoding RNA Meg3 affects insulin synthesis and secretion in mouse pancreatic beta cells. J Cell Physiol. 2016;231(4):852–62.

    Article  CAS  Google Scholar 

  12. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487–93.

  13. Apostolova N, Iannantuoni F, Gruevska A, Muntane J, Rocha M, Victor VM. Mechanisms of action of metformin in type 2 diabetes: effects on mitochondria and leukocyte–endothelium interactions. Redox Biol. 2020;34: 101517.

    Article  CAS  Google Scholar 

  14. Out M, Top WM, Lehert P, Schalkwijk CA, Stehouwer CD, Kooy A. Long-term treatment with metformin in type 2 diabetes and vitamin D levels: a post-hoc analysis of a randomized placebo-controlled trial. Diabetes Obes Metab. 2018;20(8):1951–6.

    Article  CAS  Google Scholar 

  15. Guo J, Zhou Y, Cheng Y, Fang W, Hu G, Wei J, et al. Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice. Cell Physiol Biochem. 2018;45(4):1487–505.

    Article  CAS  Google Scholar 

  16. Wang Y, Tang H, Ji X, Zhang Y, Xu W, Yang X, et al. Expression profile analysis of long non-coding RNAs involved in the metformin-inhibited gluconeogenesis of primary mouse hepatocytes. Int J Mol Med. 2018;41(1):302–10.

    CAS  Google Scholar 

  17. Zare M, Panahi G, Koushki M, Mostafavi-Pour Z, Meshkani R. Metformin reduces lipid accumulation in HepG2 cells via downregulation of miR-33b. Arch Physiol Biochem. 2022;128(2):333–40.

    Article  CAS  Google Scholar 

  18. Lalau J-D, Kajbaf F, Bennis Y, Hurtel-Lemaire A-S, Belpaire F, De Broe ME. Metformin treatment in patients with type 2 diabetes and chronic kidney disease stages 3A, 3B, or 4. Diabetes Care. 2018;41(3):547–53.

    Article  CAS  Google Scholar 

  19. Tandon T, Dubey AK, Srivastava S, Manocha S, Arora E, Hasan N. A pharmacoeconomic analysis to compare cost-effectiveness of metformin plus teneligliptin with metformin plus glimepiride in patients of type-2 diabetes mellitus. J Family Med Primary Care. 2019;8(3):955.

    Article  Google Scholar 

  20. Shiferaw WS, Akalu TY, Desta M, Kassie AM, Petrucka PM, Aynalem YA. Effect of educational interventions on knowledge of the disease and glycaemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2021;11(12): e049806.

    Article  Google Scholar 

  21. Rashid M, Shahzad M, Mahmood S, Khan K. Variability in the therapeutic response of Metformin treatment in patients with type 2 diabetes mellitus. Pak J Med Sci. 2019;35(1):71.

    Article  Google Scholar 

  22. Liu Y, Liu X, Zhang S, Zhu Q, Fu X, Chen H, et al. Association of anthropometric indices with the development of diabetes among hypertensive patients in China: a cohort study. Front Endocrinol. 2021. https://doi.org/10.3389/fendo.2021.736077.

    Article  Google Scholar 

  23. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  Google Scholar 

  24. Ramakers C, Ruijter JM, Deprez RHL, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339(1):62–6.

    Article  CAS  Google Scholar 

  25. Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 2020;48(D1):D148-D54.

  26. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;10.

  27. Rines AK, Sharabi K, Tavares CD, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov. 2016;15(11):786–804.

    Article  CAS  Google Scholar 

  28. Kim YD, Park K-G, Lee Y-S, Park Y-Y, Kim D-K, Nedumaran B, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008;57(2):306–14.

    Article  CAS  Google Scholar 

  29. Yang L, Jiang J. GAS5 regulates RECK expression and inhibits invasion potential of HCC cells by sponging miR-135b. BioMed Res Int. 2019. https://doi.org/10.1155/2019/2973289.

    Article  Google Scholar 

  30. Leti F, Legendre C, Still CD, Chu X, Petrick A, Gerhard GS, et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Transl Res. 2017;190(25–39): e21.

    Google Scholar 

  31. Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–93.

    Article  CAS  Google Scholar 

  32. Shu L, Hou X, Song G, Wang C, Ma H. Comparative analysis of long non-coding RNA expression profiles induced by resveratrol and metformin treatment for hepatic insulin resistance. Int J Mol Med. 2021;48(5):1–14.

    Article  Google Scholar 

  33. Kulkarni AS, Brutsaert EF, Anghel V, Zhang K, Bloomgarden N, Pollak M, et al. Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults. Aging Cell. 2018;17(2): e12723.

    Article  Google Scholar 

  34. de Kreutzenberg SV, Ceolotto G, Cattelan A, Pagnin E, Mazzucato M, Garagnani P, et al. Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial. Nutr Metab Cardiovasc Dis. 2015;25(7):686–93.

  35. Tseng H-H, Chen Y-Z, Chou N-H, Chen Y-C, Wu C-C, Liu L-F, et al. Metformin inhibits gastric cancer cell proliferation by regulation of a novel Loc100506691-CHAC1 axis. Mol Therapy-Oncol. 2021;22:180–94.

    Article  CAS  Google Scholar 

  36. Chen Z, Wei H, Zhao X, Xin X, Peng L, Ning Y, et al. Metformin treatment alleviates polycystic ovary syndrome by decreasing the expression of MMP-2 and MMP-9 via H19/miR-29b-3p and AKT/mTOR/autophagy signaling pathways. J Cell Physiol. 2019;234(11):19964–76.

    Article  CAS  Google Scholar 

  37. Shu C, Yan D, Chen C, Mo Y, Wu L, Gu J, et al. Metformin exhibits its therapeutic effect in the treatment of pre-eclampsia via modulating the Met/H19/miR-148a-5p/P28 and Met/H19/miR-216-3p/EBI3 signaling pathways. Int Immunopharmacol. 2019;74: 105693.

    Article  CAS  Google Scholar 

  38. Zeng J, Zhu L, Liu J, Zhu T, Xie Z, Sun X, et al. Metformin protects against oxidative stress injury induced by ischemia/reperfusion via regulation of the lncRNA-H19/miR-148a-3p/Rock2 axis. Oxidat Med Cell Longev. 2019. https://doi.org/10.1155/2019/8768327.

    Article  Google Scholar 

  39. Aminimoghaddam S, Fooladi B, Noori M, Klashami ZN, Hamidi AK, Amoli MM. The effect of metformin on expression of long non-coding RNA H19 in endometrial cancer. Med J Islamic Rep Iran. 2021. https://doi.org/10.47176/mjiri.35.155.

  40. Gao Y, Wu F, Zhou J, Yan L, Jurczak MJ, Lee H-Y, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014;42(22):13799–811.

    Article  CAS  Google Scholar 

  41. Tello-Flores VA, Valladares-Salgado A, Ramírez-Vargas MA, Cruz M, del-Moral-Hernández O, Cahua-Pablo JÁ, et al. Altered levels of MALAT1 and H19 derived from serum or serum exosomes associated with type-2 diabetes. Non-coding RNA Res. 2020;5(2):71–6.

  42. Jiang Y, Qian T, Li S, Xie Y, Tao M. Metformin reverses tamoxifen resistance through the lncRNA GAS5-medicated mTOR pathway in breast cancer. Ann Transl Med. 2022;10(6):366.

    Article  CAS  Google Scholar 

  43. Jin F, Wang N, Zhu Y, You L, Wang L, De W, et al. Downregulation of long noncoding RNA Gas5 affects cell cycle and insulin secretion in mouse pancreatic β cells. Cell Physiol Biochem. 2017;43(5):2062–73.

    Article  CAS  Google Scholar 

  44. Wang S, Ai H, Liu L, Zhang X, Gao F, Zheng L, et al. Micro-RNA-27a/b negatively regulates hepatic gluconeogenesis by targeting FOXO1. Am J Physiol Endocrinol Metab. 2019;317(5):E911–24.

    Article  CAS  Google Scholar 

  45. Li B, Fan J, Chen N. A novel regulator of type II diabetes: MicroRNA-143. Trends Endocrinol Metab. 2018;29(6):380–8.

    Article  CAS  Google Scholar 

  46. Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37(5):1375–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate all volunteers for their participation in the study.

Funding

This work was financially supported by a Grant (960429) from the Deputy of Research, Yasuj University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Behnam Alipoor planned the studies; Behnam Alipoor and Ali Mirzaei analyzed and interpreted all experiments; Seyedeh Nasrin Parvar, Ali Zare and Shekoofeh Nikooei conducted all the experiments. Behnam Alipoor and Amir Hossein Doustimotlagh wrote the manuscript; Arash Arya monitored the treatment of patients as internal medicine.

Corresponding author

Correspondence to Behnam Alipoor.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvar, S.N., Mirzaei, A., Zare, A. et al. Effect of metformin on the long non-coding RNA expression levels in type 2 diabetes: an in vitro and clinical trial study. Pharmacol. Rep 75, 189–198 (2023). https://doi.org/10.1007/s43440-022-00427-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00427-3

Keywords

Navigation