Skip to main content

Advertisement

Log in

CoQ10 exerts hepatoprotective effect in fructose-induced fatty liver model in rats

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Excess dietary sugar is associated with deleterious metabolic effects, liver injury, and coenzyme-Q10 (CoQ10) deficiency. This study investigates the ability of CoQ10 to protect against fructose-induced hepatic damage.

Methods

Rats were fed tap water or 30% fructose for 12 weeks with or without CoQ10 (10 mg/kg, po). An additional group of rats were allowed to feed on either water or 30% fructose for 12 weeks, followed by four weeks of treatment with either the vehicle or CoQ10.

Results

Fructose-fed rats showed lower CoQ10 levels, increased systolic pressure, increased body weight, higher liquid consumption, decreased food intake and hyperglycemia. Fructose-fed rats also showed deteriorated serum and liver lipid profiles, impaired liver function tests and oxidative status, and lower expression of adiponectin receptor 1 and 2 along with higher GLUT-2 levels. Furthermore, following fructose treatment, tyrosine kinase-PI3K pathway was inhibited. Additionally, there was an increase in the levels of apoptotic markers and serum visfatin and a decrease in the levels of adiponectin and soluble receptor of the advanced glycated end product. Consequently, several histopathological changes were detected in the liver. Concurrent or three months post-exposure administration of CoQ10 in fructose rats significantly reversed or attenuated all the measured parameters and hepato-cytoarchitecture alterations.

Conclusion

This study suggests CoQ10 supplement as a possible prophylaxis or treatment candidate for fructose-induced liver injury.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Adipo R1 and R2:

Adiponectin receptor 1 and 2

AGES:

Advanced glycation end products

CoQ10:

Coenzyme-Q10

ANOVA:

Analysis of variance

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

DBP:

Diastolic blood pressure

FFAs:

Free fatty acids

GLUT 2:

Glucose transporter 2

H&E:

Hematoxylin and eosin

HOMA-IR:

Homeostasis model assessment index for insulin resistance

GSH:

Reduced glutathione

MDA:

Malondialdehyde

NAFDL:

Non-alcoholic fatty liver disease

SBP:

Systolic blood pressure

sRAGE:

Soluble receptor of advanced glycated end product

TC:

Total cholesterol

TGs:

Triglycerides

References

  1. Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7:251–64.

    CAS  PubMed  Google Scholar 

  2. Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, et al. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation. 2007;116:480–8.

    PubMed  Google Scholar 

  3. Otero-Losada ME, Grana DR, Muller A, Ottaviano G, Ambrosio G, Milei J. Lipid profile and plasma antioxidant status in sweet carbonated beverage-induced metabolic syndrome in rat. Int J Cardiol. 2011;146:106–9.

    PubMed  Google Scholar 

  4. Saini R. Coenzyme Q10: the essential nutrient. J Pharm Bioallied Sci. 2011;3:466–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol. 2007;37:31–7.

    CAS  PubMed  Google Scholar 

  6. Watts GF, Playford DA, Croft KD, Ward NC, Mori TA, Burke V. Coenzyme Q(10) improves endothelial dysfunction of the brachial artery in Type II diabetes mellitus. Diabetologia. 2002;45:420–6.

    CAS  PubMed  Google Scholar 

  7. Tarry-Adkins JL, Fernandez-Twinn DS, Madsen R, Chen JH, Carpenter A, Hargreaves IP, et al. Coenzyme Q10 prevents insulin signaling dysregulation and inflammation prior to development of insulin resistance in male offspring of a rat model of poor maternal nutrition and accelerated postnatal growth. Endocrinology. 2015;156:3528–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Langsjoen P, Willis R, Folkers K. Treatment of essential hypertension with coenzyme Q10. Mol Aspects Med. 1994;15(Suppl):S265–S272272.

    PubMed  Google Scholar 

  9. Dzugkoev SG, Kaloeva MB, Dzugkoeva FS. Effect of combination therapy with coenzyme Q10 on functional and metabolic parameters in patients with type 1 diabetes mellitus. Bull Exp Biol Med. 2012;152:364–6.

    CAS  PubMed  Google Scholar 

  10. Farsi F, Mohammadshahi M, Alavinejad P, Rezazadeh A, Zarei M, Engali KA. Functions of coenzyme Q10 supplementation on liver enzymes, markers of systemic inflammation, and adipokines in patients affected by nonalcoholic fatty liver disease: a double-blind, placebo-controlled, randomized clinical trial. J Am Coll Nutr. 2016;35:346–53.

    CAS  PubMed  Google Scholar 

  11. Fouad AA, Jresat I. Hepatoprotective effect of coenzyme Q10 in rats with acetaminophen toxicity. Environ Toxicol Pharmacol. 2012;33:158–67.

    CAS  PubMed  Google Scholar 

  12. Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005;54:1024–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Feldstein AE, Gores GJ. Apoptosis in alcoholic and nonalcoholic steatohepatitis. Front Biosci. 2005;10:3093–9.

    CAS  PubMed  Google Scholar 

  14. Meng Y, Wang W, Kang J, Wang X, Sun L. Role of the PI3K/AKT signalling pathway in apoptotic cell death in the cerebral cortex of streptozotocin-induced diabetic rats. Exp Ther Med. 2017;13:2417–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mendonca MM, Santana JS, da Cruz KR, Ianzer D, Ghedini PC, Nalivaiko E, et al. Involvement of GABAergic and adrenergic neurotransmissions on paraventricular nucleus of hypothalamus in the control of cardiac function. Front Physiol. 2018;9:670.

    PubMed  PubMed Central  Google Scholar 

  16. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    CAS  PubMed  Google Scholar 

  17. Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582:67–78.

    CAS  PubMed  Google Scholar 

  18. Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014;9:e96801.

    PubMed  PubMed Central  Google Scholar 

  19. Hao Q, Xiao X, Zhen J, Feng J, Song C, Jiang B, et al. Resveratrol attenuates acute kidney injury by inhibiting death receptormediated apoptotic pathways in a cisplatininduced rat model. Mol Med Rep. 2016;14:3683–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferrara N, Abete P, Ambrosio G, Landino P, Caccese P, Cirillo P, et al. Protective role of chronic ubiquinone administration on acute cardiac oxidative stress. J Pharmacol Exp Ther. 1995;274:858–65.

    CAS  PubMed  Google Scholar 

  21. Mamikutty N, Thent ZC, Haji SF. Fructose-drinking water induced nonalcoholic fatty liver disease and ultrastructural alteration of hepatocyte mitochondria in male Wistar rat. Biomed Res Int. 2015;2015:895961.

    PubMed  PubMed Central  Google Scholar 

  22. Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology. 2009;50:1094–104.

    CAS  PubMed  Google Scholar 

  23. Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, et al. Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension. 2005;45:1012–8.

    CAS  PubMed  Google Scholar 

  24. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol. 2008;295:G987–G995995.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mattes RD. Dietary compensation by humans for supplemental energy provided as ethanol or carbohydrate in fluids. Physiol Behav. 1996;59:179–87.

    CAS  PubMed  Google Scholar 

  26. He W, Xu Y, Zhang C, Lu J, Li J, Xiang D, et al. Hepatoprotective effect of calculus bovis sativus on nonalcoholic fatty liver disease in mice by inhibiting oxidative stress and apoptosis of hepatocytes. Drug Des Dev Ther. 2017;11:3449–600.

    CAS  Google Scholar 

  27. Seki K, Kitade M, Nishimura N, Kaji K, Asada K, Namisaki T, et al. Oral administration of fructose exacerbates liver fibrosis and hepatocarcinogenesis via increased intestinal permeability in a rat steatohepatitis model. Oncotarget. 2018;9:28638–51.

    PubMed  PubMed Central  Google Scholar 

  28. Milei J, Otero Losada M, Gomez Llambi H, Grana DR, Suarez D, Azzato F, et al. Chronic cola drinking induces metabolic and cardiac alterations in rats. World J Cardiol. 2011;3:111–6.

    PubMed  PubMed Central  Google Scholar 

  29. Ashkani Esfahani S, Esmaeilzadeh E, Bagheri F, Emami Y, Farjam M. The effect of co-enzyme q10 on acute liver damage in rats, a biochemical and pathological study. Hepat Mon. 2013;13:e13685.

    PubMed  PubMed Central  Google Scholar 

  30. Singh RB, Shinde SN, Chopra RK, Niaz MA, Thakur AS, Onouchi Z. Effect of coenzyme Q10 on experimental atherosclerosis and chemical composition and quality of atheroma in rabbits. Atherosclerosis. 2000;148:275–82.

    CAS  PubMed  Google Scholar 

  31. Modi K, Santani DD, Goyal RK, Bhatt PA. Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biol Trace Elem Res. 2006;109:25–34.

    CAS  PubMed  Google Scholar 

  32. Donati G, Stagni B, Piscaglia F, Venturoli N, Morselli-Labate AM, Rasciti L, et al. Increased prevalence of fatty liver in arterial hypertensive patients with normal liver enzymes: role of insulin resistance. Gut. 2004;53:1020–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;20:6.

    Google Scholar 

  34. Nadler ST, Stoehr JP, Rabaglia ME, Schueler KL, Birnbaum MJ, Attie AD. Normal Akt/PKB with reduced PI3K activation in insulin-resistant mice. Am J Physiol Endocrinol Metab. 2001;281:E1249–E12541254.

    CAS  PubMed  Google Scholar 

  35. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;20:18.

    Google Scholar 

  36. Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest. 2001;108:1875–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen SJ, Yen CH, Huang YC, Lee BJ, Hsia S, Lin PT. Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome. PLoS One. 2012;7:e45693.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. El-Abhar HS, Schaalan MF. Topiramate-induced modulation of hepatic molecular mechanisms: an aspect for its anti-insulin resistant effect. PLoS One. 2012;7:e37757.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13:332–9.

    CAS  PubMed  Google Scholar 

  40. Oita RC, Ferdinando D, Wilson S, Bunce C, Mazzatti DJ. Visfatin induces oxidative stress in differentiated C2C12 myotubes in an Akt- and MAPK-independent, NFkB-dependent manner. Pflugers Arch. 2010;459:619–30.

    CAS  PubMed  Google Scholar 

  41. Chang YH, Chang DM, Lin KC, Shin SJ, Lee YJ. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab Res Rev. 2011;27:515–27.

    PubMed  Google Scholar 

  42. Jorgacevic B, Vucevic D, Veskovic M, Mladenovic D, Vukicevic D, Vukicevic RJ, et al. The effect of cannabinoid receptor 1 blockade on adipokine and proinflammatory cytokine concentration in adipose and hepatic tissue in mice with nonalcoholic fatty liver disease. Can J Physiol Pharmacol. 2019;97:120–9.

    CAS  PubMed  Google Scholar 

  43. Oka Y, Asano T, Shibasaki Y, Lin JL, Tsukuda K, Akanuma Y, et al. Increased liver glucose-transporter protein and mRNA in streptozocin-induced diabetic rats. Diabetes. 1990;39:441–6.

    CAS  PubMed  Google Scholar 

  44. Burcelin R, Eddouks M, Kande J, Assan R, Girard J. Evidence that GLUT-2 mRNA and protein concentrations are decreased by hyperinsulinaemia and increased by hyperglycaemia in liver of diabetic rats. Biochem J. 1992;288(Pt 2):675–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Devangelio E, Santilli F, Formoso G, Ferroni P, Bucciarelli L, Michetti N, et al. Soluble RAGE in type 2 diabetes: association with oxidative stress. Free Radic Biol Med. 2007;43:511–8.

    CAS  PubMed  Google Scholar 

  46. Gholami M, Zarei P, Sadeghi Sedeh B, Rafiei F, Khosrowbeygi A. Effects of coenzyme Q10 supplementation on serum values of adiponectin, leptin, 8-isoprostane and malondialdehyde in women with type 2 diabetes. Gynecol Endocrinol. 2018;20:1–5.

    Google Scholar 

  47. Amin MM, Asaad GF, Abdel Salam RM, El-Abhar HS, Arbid MS. Novel CoQ10 antidiabetic mechanisms underlie its positive effect: modulation of insulin and adiponectine receptors, tyrosine kinase, PI3K, glucose transporters, sRAGE and visfatin in insulin resistant/diabetic rats. PLoS One. 2014;9:e89169.

    PubMed  PubMed Central  Google Scholar 

  48. Xue R, Yang J, Wu J, Meng Q, Hao J. Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathway. Oncotarget. 2017;8:92300–11.

    PubMed  PubMed Central  Google Scholar 

  49. Ozalp B, Elbey H, Aydin H, Tekkesin MS, Uzun H. The effect of coenzyme Q10 on venous ischemia reperfusion injury. J Surg Res. 2016;204:304–10.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work did not receive any funding from funding agencies in the public, commercial, or not-for-profit sectors

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: SME-S, SR, AEA and EAAA. Conducted experiments: SMES, AEA and AEAA. Performed data analysis: SME-S, SR, AEA and Ahmed. Contributed to the writing of the manuscript: SR, SME-S, AEA and EAAA.

Corresponding author

Correspondence to Samar Rezq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshazly, S.M., Alsemeh, A.E., Ahmad, E.A.A. et al. CoQ10 exerts hepatoprotective effect in fructose-induced fatty liver model in rats. Pharmacol. Rep 72, 922–934 (2020). https://doi.org/10.1007/s43440-020-00075-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00075-5

Keywords

Navigation