Skip to main content
Log in

Lycopene increases metabolic activity of rat liver CYP2B, CYP2D and CYP3A

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Lycopene as a naturally occurring carotenoid is a common part of the human diet. Several beneficial properties of lycopene have been identified, with the most studied being anti-cancer and antioxidant activity. However, no evidence of possible drug–drug or drug–food supplement interactions has been found.

Methods

We studied the in vivo effect of lycopene on the selected rat liver cytochromes P450 (CYPs): CYP1A2, CYP2B, CYP2C11, CYP2C6, CYP2D, and CYP3A. Lycopene was administered to rats intragastrically at doses of 4, 20, and 100 mg/kg/day for 10 consecutive days. Total protein content, P450 Content, and metabolic activity of selected CYPs were evaluated in the rat liver microsomal fraction.

Results

Increased CYP2B, CYP2D, and CYP3A metabolic activities were observed in animals treated with the lycopene dose of 100 mg/kg/day. The content of CYP3A1 protein was increased by the dose of 100 mg/kg/day and CYP3A2 protein was increased by all administered doses of lycopene.

Conclusion

The results of our study indicate that lycopene increased the metabolic activity of enzymes that are orthologues to the most clinically important human enzymes involved in xenobiotic metabolism. The risk of pharmacokinetic interactions between lycopene dietary supplements and co-administered drugs should be evaluated.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rao AV, Agarwal S. Role of antioxidant lycopene in cancer and heart disease. J Am Coll Nutr. 2000;19(5):563–9.

    Article  CAS  Google Scholar 

  2. Chasse GA, Mak ML, Deretey E, Farkas I, Torday LL, Papp JG, et al. An ab initio computational study on selected lycopene isomers. J Mol Struct Theochem. 2001;571(1):27–37.

    Article  CAS  Google Scholar 

  3. O’Neill ME, Southon S, Corridan B, Olmedilla B, Granado F, Blanco I, et al. A European carotenoid database to assess carotenoid intakes and its use in a five-country comparative study. Br J Nutr. 2001;85(4):499–507.

    Article  Google Scholar 

  4. Rao AV, Waseem Z, Agarwal S. Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res Int. 1998;31(10):737–41.

    Article  CAS  Google Scholar 

  5. Suwanaruang T. Analyzing lycopene content in fruits. Agric Agric Sci Proc. 2016;11:46–8.

    Google Scholar 

  6. Milani C, Maccari M, Mosconi P. Action of lycopene in the experimental gastric ulcer. Pharmacology. 1970;4(6):334–40.

    Article  CAS  Google Scholar 

  7. Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274(2):532–8.

    Article  Google Scholar 

  8. Costa-Rodrigues J, Pinho O, Monteiro PRR. Can lycopene be considered an effective protection against cardiovascular disease? Food Chem. 2018;245:1148–53.

    Article  CAS  Google Scholar 

  9. Thies F, Masson LF, Rudd A, Vaughan N, Tsang C, Brittenden J, et al. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: a randomized controlled trial. Am J Clin Nutr. 2012;95(5):1013–22.

    Article  CAS  Google Scholar 

  10. Karppi J, Kurl S, Ronkainen K, Kauhanen J, Laukkanen JA. Serum carotenoids reduce progression of early atherosclerosis in the carotid artery wall among Eastern Finnish men. PLoS ONE. 2013;8(5):e64107.

    Article  Google Scholar 

  11. Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Intake of carotenoids and retino in relation to risk of prostate cancer. JNCI J Natl Cancer Inst. 1995;87(23):1767–76.

    Article  CAS  Google Scholar 

  12. Zu K, Mucci L, Rosner BA, Clinton SK, Loda M, Stampfer MJ, et al. Dietary lycopene, angiogenesis, and prostate cancer: a prospective study in the prostate-specific antigen era. JNCI J Natl Cancer Inst. 2014;106(2):430.

    Article  Google Scholar 

  13. King-Batoon A, Leszczynska JM, Klein CB. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen. 2008;49(1):36–45.

    Article  CAS  Google Scholar 

  14. Palozza P, Simone RE, Catalano A, Mele MC. Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers. 2011;3(2):2333–57.

    Article  CAS  Google Scholar 

  15. Vecchia CL. Tomatoes, lycopene intake, and digestive tract and female hormone-related neoplasms. Exp Biol Med. 2002;227(10):860–3.

    Article  Google Scholar 

  16. Nkondjock A, Ghadirian P, Johnson KC, Krewski D. Dietary intake of lycopene is associated with reduced pancreatic cancer risk. J Nutr. 2005;135(3):592–7.

    Article  CAS  Google Scholar 

  17. Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 1996;384(3):240–2.

    Article  CAS  Google Scholar 

  18. Stahl W, Junghans A, de Boer B, Driomina ES, Briviba K, Sies H. Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett. 1998;427(2):305–8.

    Article  CAS  Google Scholar 

  19. Sahin K, Kucuk O. Lycopene in cancer prevention. In: Ramawat KG, Merillon JM, editors. Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Berlin: Springer; 2013. p. 3875–3922. https://doi.org/10.1007/978-3-642-22144-6.

    Chapter  Google Scholar 

  20. Izzo AA, Hoon-Kim S, Radhakrishnan R, Williamson EM. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother Res. 2016;30(5):691–700.

    Article  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  PubMed  Google Scholar 

  22. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. II. J Biol Chem. 1964;239:2379–85.

    CAS  PubMed  Google Scholar 

  23. Wójcikowski J, Gołembiowska K, Daniel WA. Regulation of liver cytochrome P450 by activation of brain dopaminergic system: physiological and pharmacological implications. Biochem Pharmacol. 2008;76(2):258–67.

    Article  Google Scholar 

  24. Dovrtelova G, Zendulka O, Noskova K, Jurica J, Pes O, Dusek J, et al. Effect of endocannabinoid oleamide on rat and human liver cytochrome P450 enzymes in in vitro and in vivo models. Drug Metab Dispos. 2018;46:913–23.

    Article  CAS  Google Scholar 

  25. Dovrtelova G, Noskova K, Jurica J, Turjap M, Zendulka O. Can bioactive compounds of Crocus sativus L. Influence the metabolic activity of selected CYP enzymes in the rat? Physiol Res. 2015;64:S453–8.

    CAS  PubMed  Google Scholar 

  26. Noskova K, Dovrtelova G, Zendulka O, Remínek R, Jurica J. The effect of (−)-linalool on the metabolic activity of liver CYP enzymes in rats. Physiol Res. 2016;65:6.

    Google Scholar 

  27. Tyndale RF, Li Y, Li N-Y, Messina E, Miksys S, Sellers EM. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan. Drug Metab Dispos. 1999;27(8):924–30.

    CAS  PubMed  Google Scholar 

  28. Kobayashi K, Urashima K, Shimada N, Chiba K. Substrate specificity for rat cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat. Biochem Pharmacol. 2002;63(5):889–96.

    Article  CAS  Google Scholar 

  29. Rowles JL, Ranard KM, Applegate CC, Jeon S, An R, Erdman JW. Processed and raw tomato consumption and risk of prostate cancer: a systematic review and dose–response meta-analysis. Prostate Cancer Prostatic Dis. 2018;21:319–36.

    Article  Google Scholar 

  30. Kavanaugh CJ, Trumbo PR, Ellwood KC. The U.S. Food and Drug Administration’s Evidence-based review for qualified health claims: tomatoes, lycopene, and cancer. JNCI J Natl Cancer Inst. 2007;99(14):1074–85.

    Article  CAS  Google Scholar 

  31. Kucuk O, Sarkar FH, Sakr W, Djuric Z, Pollak MN, Khachik F, et al. Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Prev Biomark. 2001;10(8):861–8.

    CAS  Google Scholar 

  32. Kucuk O, Sarkar FH, Djuric Z, Sakr W, Pollak MN, Khachik F, et al. Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med. 2002;227(10):881–5.

    Article  CAS  Google Scholar 

  33. Leoncini E, Nedovic D, Panic N, Pastorino R, Edefonti V, Boccia S. Carotenoid intake from natural sources and head and neck cancer: a systematic review and meta-analysis of epidemiological studies. Cancer Epidemiol Prev Biomark. 2015;24(7):1003–11.

    Article  CAS  Google Scholar 

  34. Crooker K, Aliani R, Ananth M, Arnold L, Anant S, Thomas SM. A review of promising natural chemopreventive agents for head and neck cancer. Cancer Prev Res. 2018;11(8):441–50.

    Article  Google Scholar 

  35. Gullett NP, Ruhul Amin ARM, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, et al. Cancer prevention with natural compounds. Semin Oncol. 2010;37(3):258–81.

    Article  CAS  Google Scholar 

  36. Tang Y, Parmakhtiar B, Simoneau AR, Xie J, Fruehauf J, Lilly M, et al. Lycopene enhances Docetaxel’s effect in castration-resistant prostate cancer associated with insulin-like growth factor i receptor levels. Neoplasia. 2011;13(2):108–19.

    Article  CAS  Google Scholar 

  37. Kong L, Song C, Ye L, Xu J, Guo D, Shi Q. The effect of lycopene on cytochrome P450 isoenzymes and P-glycoprotein by using human liver microsomes and Caco-2 cell monolayer model. Int J Food Sci Nutr. 2018;69(7):835–41.

    Article  CAS  Google Scholar 

  38. Jewell C, O’Brien NM. Effect of dietary supplementation with carotenoids on xenobiotic metabolizing enzymes in the liver, lung, kidney and small intestine of the rat. Br J Nutr. 1999;81(3):235–42.

    Article  CAS  Google Scholar 

  39. Porrini M, Riso P. What are typical lycopene intakes? J Nutr. 2005;135(8):2042S–5S.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication was written with the support of the Specific University Research grant (MUNI/A/1550/2018) provided by the Ministry of Education, Youth and Sports of the Czech Republic and by the Specific University Research Grant (MUNI/A/0976/2018) and by the funds from the Faculty of Medicine, Masaryk University junior researcher Ondrej Pes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Juřica.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosková, K., Dovrtělová, G., Zendulka, O. et al. Lycopene increases metabolic activity of rat liver CYP2B, CYP2D and CYP3A. Pharmacol. Rep 72, 156–165 (2020). https://doi.org/10.1007/s43440-019-00007-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-019-00007-y

Keywords

Navigation