Skip to main content
Log in

Advances in metaproteomic profiling of molecular microbiology and environmental responses

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

In the present review, the application of metaproteomics is highlighted to understand the microbial species under different environmental conditions. As the environmental conditions are changing because of natural and anthropogenic activities, the molecular microbiology of the environment is also affected. The proteins are essential molecules expressed by the microorganism under environmental stresses, which are extracted and analyzed for the studies. Metaproteomics based on the molecular microbial ecology is still at the very incipient stage but has a strong potential over other non-omics and omics methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abiraami TV, Singh S, Nain L. Soil metaproteomics as a tool for monitoring functional microbial communities: promises and challenges. Rev Environ Sci Bio/Technology. 2020;19(1):73–102.

    CAS  Google Scholar 

  2. Starke R, Jehmlich N, Bastida F. Using proteins to study how microbes contribute to soil ecosystem services: the current state and future perspectives of soil metaproteomics. J Proteomics. 2019;198:50–8. https://doi.org/10.1016/j.jprot.2018.11.011.

    Article  CAS  PubMed  Google Scholar 

  3. Dominati E, Patterson M, Mackay A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ. 2010;69(9):1858–68. https://doi.org/10.1016/j.ecolecon.2010.05.002.

    Article  Google Scholar 

  4. Bastida F, Moreno JL, Nicolas C, Hernandez T, Garcia C. Soil metaproteomics: a review of an emerging environmental science. Significance, methodology and perspectives. Eur J Soil Sci. 2009;60(6):845–59.

    CAS  Google Scholar 

  5. Mueller RS, Pan C. Chapter Fifteen - Sample Handling and Mass Spectrometry for Microbial Metaproteomic Analyses. In: DeLong EFBTM in E, ed. Microbial Metagenomics, Metatranscriptomics, and Metaproteomics. Vol 531. Academic Press; 2013:289–303. doi:https://doi.org/10.1016/B978-0-12-407863-5.00015-0

  6. Shrestha HK, Appidi MR, Villalobos Solis MI, et al. Metaproteomics reveals insights into microbial structure, interactions, and dynamic regulation in defined communities as they respond to environmental disturbance. BMC Microbiol. 2021;21(1):1–17.

    Google Scholar 

  7. Bharagava RN, Purchase D, Saxena G, Mulla SI. Chapter 26 - Applications of Metagenomics in Microbial Bioremediation of Pollutants: From Genomics to Environmental Cleanup. In: Das S, Dash HRBTMD in the GE, eds. Academic Press; 2019:459–477. doi:https://doi.org/10.1016/B978-0-12-814849-5.00026-5

  8. Dashora K, Gattupalli M, Javed Z, et al. Leveraging multiomics approaches for producing lignocellulose degrading enzymes. Cell Mol Life Sci. 2022;79(2):1–15. https://doi.org/10.1007/s00018-022-04176-7.

    Article  CAS  Google Scholar 

  9. Junge K, Cameron K, Nunn B. Chapter 12 - Diversity of Psychrophilic Bacteria in Sea and Glacier Ice Environments—Insights Through Genomics, Metagenomics, and Proteomics Approaches. In: Das S, Dash HRBTMD in the GE, eds. Academic Press; 2019:197–216. doi:https://doi.org/10.1016/B978-0-12-814849-5.00012-5

  10. Srivastava N, Gupta B, Gupta S, Danquah MK, Sarethy IP. Chapter 6 - Analyzing Functional Microbial Diversity: An Overview of Techniques. In: Das S, Dash HRBTMD in the GE, eds. Academic Press; 2019:79–102. doi:https://doi.org/10.1016/B978-0-12-814849-5.00006-X

  11. Panigrahi S, Velraj P, Subba Rao T. Chapter 21 - Functional Microbial Diversity in Contaminated Environment and Application in Bioremediation. In: Das S, Dash HRBTMD in the GE, eds. Academic Press; 2019:359–385. doi:https://doi.org/10.1016/B978-0-12-814849-5.00021-6

  12. Zampieri E, Chiapello M, Daghino S, Bonfante P, Mello A. Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Sci Rep. 2016;6:25773.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vogel TM, Hirsch PR, Simonet P, et al. Advantages of the metagenomic approach for soil exploration: reply from Vogel et al. Nat Rev Microbiol. 2009;7(10):756–7.

    CAS  Google Scholar 

  14. Qian C, Hettich RL. Optimized extraction method to remove humic acid interferences from soil samples prior to microbial proteome measurements. J Proteome Res. 2017;16(7):2537–46.

    CAS  PubMed  Google Scholar 

  15. Lau MCY, Harris RL, Oh Y, Yi MJ, Behmard A, Onstott TC. Taxonomic and functional compositions impacted by the quality of metatranscriptomic assemblies. Front Microbiol. Published online 2018:1235

  16. Gutleben J, Chaib De Mares M, Van Elsas JD, Smidt H, Overmann J, Sipkema D. The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol. 2018;44(2):212–29.

    CAS  PubMed  Google Scholar 

  17. Picotti P, Aebersold R. Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9(6):555–66.

    CAS  PubMed  Google Scholar 

  18. Kleiner M. Metaproteomics: much more than measuring gene expression in microbial communities. Msystems. 2019;4(3):e00115-e119.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Muth T, Renard BY, Martens L. Metaproteomic data analysis at a glance: advances in computational microbial community proteomics. Expert Rev Proteomics. 2016;13(8):757–69.

    CAS  PubMed  Google Scholar 

  20. Murray AE, Freudenstein J, Gribaldo S, et al. Roadmap for naming uncultivated Archaea and bacteria. Nat Microbiol. 2020;5(8):987–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bahram M, Hildebrand F, Forslund SK, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560(7717):233–7.

    CAS  PubMed  Google Scholar 

  22. Parks DH, Rinke C, Chuvochina M, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2(11):1533–42.

    CAS  PubMed  Google Scholar 

  23. Ogunseitan OA. Direct extraction of proteins from environmental samples. J Microbiol Methods. 1993;17(4):273–81.

    CAS  Google Scholar 

  24. Singleton I, Merrington G, Colvan S, Delahunty JS. The potential of soil protein-based methods to indicate metal contamination. Appl Soil Ecol. 2003;23(1):25–32.

    Google Scholar 

  25. Wilmes P, Wexler M, Bond PL. Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE. 2008;3(3): e1778.

    PubMed  PubMed Central  Google Scholar 

  26. Callister SJ, Fillmore TL, Nicora CD, et al. Addressing the challenge of soil metaproteome complexity by improving metaproteome depth of coverage through two-dimensional liquid chromatography. Soil Biol Biochem. 2018;125:290–9.

    CAS  Google Scholar 

  27. Speda J, Johansson MA, Carlsson U, Karlsson M. Assessment of sample preparation methods for metaproteomics of extracellular proteins. Anal Biochem. 2017;516:23–36.

    CAS  PubMed  Google Scholar 

  28. Redmile-Gordon MA, Armenise E, White RP, Hirsch PR, Goulding KWT. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biol Biochem. 2013;67:166–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Michalski WP, Shiell BJ. Strategies for analysis of electrophoretically separated proteins and peptides. Anal Chim Acta. 1999;383(1–2):27–46.

    CAS  Google Scholar 

  30. Graves PR, Haystead TAJ. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev. 2002;66(1):39–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Patton WF. A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophor An Int J. 2000;21(6):1123–44.

    CAS  Google Scholar 

  32. Criquet S, Farnet A, Ferre E. Protein measurement in forest litter. Biol Fertil Soils. 2002;35(5):307–13. https://doi.org/10.1007/s00374-002-0468-2.

    Article  CAS  Google Scholar 

  33. Link AJ, Eng J, Schieltz DM, et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999;17(7):676–82.

    CAS  PubMed  Google Scholar 

  34. Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ. The rhizosphere revisited: root microbiomics. Front Plant Sci. 2013;4:165.

    PubMed  PubMed Central  Google Scholar 

  35. McNear DH Jr. The rhizosphere-roots, soil and everything in between. Nat Educ Knowl. 2013;4(3):1.

    Google Scholar 

  36. Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 2020;39(1):3–17.

    CAS  PubMed  Google Scholar 

  37. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57(1):233–66.

    CAS  PubMed  Google Scholar 

  38. Saleh D, Sharma M, Seguin P, Jabaji S. Organic acids and root exudates of Brachypodium distachyon: effects on chemotaxis and biofilm formation of endophytic bacteria. Can J Microbiol. 2020;66(10):562–75.

    CAS  PubMed  Google Scholar 

  39. Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol. 2019;103(3):1155–66.

    CAS  PubMed  Google Scholar 

  40. Tartaglia M, Bastida F, Sciarrillo R, Guarino C. Soil metaproteomics for the study of the relationships between microorganisms and plants: a review of extraction protocols and ecological insights. Int J Mol Sci. 2020;21(22):8455.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Han X, He L, Xin L, Shan B, Ma B. PeaksPTM: mass spectrometry-based identification of peptides with unspecified modifications. J Proteome Res. 2011;10(7):2930–6.

    CAS  PubMed  Google Scholar 

  42. Rrj A, Bm A, Mb B, et al. Genome-Resolved Metaproteomics Decodes the Microbial and Viral Contributions to Coupled Carbon and Nitrogen Cycling in River Sediments. mSystems. 2022. https://doi.org/10.1128/msystems.00516-22.

    Article  Google Scholar 

  43. Rane NR, Tapase S, Kanojia A, et al. Molecular insights into plant–microbe interactions for sustainable remediation of contaminated environment. Bioresour Technol. 2022;344: 126246. https://doi.org/10.1016/j.biortech.2021.126246.

    Article  CAS  PubMed  Google Scholar 

  44. Liu D, Li M, Xi B, et al. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant. Microb Biotechnol. 2015;8(6):950–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Guazzaroni ME, Herbst FA, Lores I, et al. Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME J. 2013;7(1):122–36.

    CAS  PubMed  Google Scholar 

  46. Chiapello M, Zampieri E, Mello A. A small effort for researchers, a big gain for soil metaproteomics. Front Microbiol. 2020;11:88.

    PubMed  PubMed Central  Google Scholar 

  47. Murase A, Yoneda M, Ueno R, Yonebayashi K. Isolation of extracellular protein from greenhouse soil. Soil Biol Biochem. 2003;35(5):733–6.

    CAS  Google Scholar 

  48. Chen S, Rillig MC, Wang W. Improving soil protein extraction for metaproteome analysis and glomalin-related soil protein detection. Proteomics. 2009;9(21):4970–3.

    CAS  PubMed  Google Scholar 

  49. Chourey K, Jansson J, VerBerkmoes N, et al. Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res. 2010;9(12):6615–22.

    CAS  PubMed  Google Scholar 

  50. Mandalakis M, Panikov NS, Polymenakou PN, Sizova MV, Stamatakis A. A simple cleanup method for the removal of humic substances from soil protein extracts using aluminum coagulation. Environ Sci Pollut Res. 2018;25:23845–56.

    CAS  Google Scholar 

  51. Gupta SK, Rai AK, Sarim KM, et al. Metaproteomic data of maize rhizosphere for deciphering functional diversity. Data Br. 2019;27: 104574.

    Google Scholar 

  52. Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D. Challenges and perspectives of metaproteomic data analysis. J Biotechnol. 2017;261:24–36.

    CAS  PubMed  Google Scholar 

  53. Artursson V, Finlay RD, Jansson JK. Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol. 2005;7(12):1952–66.

    CAS  PubMed  Google Scholar 

  54. Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. ISME J. 2017;11(9):1949–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Saito MA, Bertrand EM, Duffy ME, et al. Progress and challenges in ocean metaproteomics and proposed best practices for data sharing. J Proteome Res. 2019;18(4):1461–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lacerda CMR, Reardon KF. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Briefings Funct Genomics Proteomics. 2009;8(1):75–87.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KD and VKG: coceptualization, review and editing, supervision. ZJ, GDT and MG: writing—original draft, review and editing, conceptualization.

Corresponding author

Correspondence to Kavya Dashora.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashora, K., Gupta, V.K., Tripathi, G.D. et al. Advances in metaproteomic profiling of molecular microbiology and environmental responses. Syst Microbiol and Biomanuf 4, 463–472 (2024). https://doi.org/10.1007/s43393-023-00231-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00231-x

Keywords

Navigation