Skip to main content
Log in

Biorefining of essential polyunsaturated fatty acids from microbial sources: current updates and prospects

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

A Correction to this article was published on 07 November 2023

This article has been updated

Abstract

The biorefinery approach ensures a sustainable source of valuable fatty acids and opens up new avenues for their application in healthcare industries. Recent studies highlight the health benefits of omega-PUFAs, spurring the search for cost-effective production methods. Microbial platforms are promising for high-yield PUFA production, with ω-3 dominating the market. ω-3 PUFAs offer antioxidant and anti-inflammatory effects, reducing illness risk, while all PUFAs contribute to cardiovascular health, diabetes prevention, cancer risk reduction, and more. ω-6 PUFAs, particularly linoleic acid (LA) and arachidonic acid (ARA), play vital roles in various aspects of health, making them high-demand bioavailable compounds. Additionally, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exhibit potential benefits in brain development and COVID-19 prevention. This comprehensive review provides insights into the state-of-the-art microbial biorefinery strategies for ω-3 and ω-6 PUFA production and their wide-ranging health-related benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

NA.

Change history

References

  1. Abdelhamid A, Hooper L, Sivakaran R, Hayhoe RPG, Welch A, PUFAH Group. The relationship between omega-3, omega-6 and total polyunsaturated fat and musculoskeletal health and functional status in adults: a systematic review and meta-analysis of RCTs. Calcif Tissue Int. 2019;105(4):353–72. https://doi.org/10.1007/s00223-019-00584-3.

    Article  CAS  PubMed  Google Scholar 

  2. Adel A, El-Baz A, Shetaia Y, Sorour NM. Biosynthesis of polyunsaturated fatty acids by two newly cold-adapted Egyptian marine yeast. 3 Biotech. 2021;11(11):461. https://doi.org/10.1007/s13205-021-03010-4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adeleke AA, Ikubanni PP, Orhadahwe TA, Christopher CT, Akano JM, Agboola OO, Ibikunle RA. Sustainability of multifaceted usage of biomass: a review. Heliyon. 2021;7(9):08025.

    Article  Google Scholar 

  4. Ahmadniay Motlagh H, Aalipanah E, Mazidi M, Faghih S. Effect of flaxseed consumption on central obesity, serum lipids, and adiponectin level in overweight or obese women: a randomised controlled clinical trial. Int J Clin Pract. 2021;75(10): e14592. https://doi.org/10.1111/ijcp.14592.

    Article  CAS  PubMed  Google Scholar 

  5. Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Taha AE, et al. Omega-3 and omega-6 fatty acids in poultry nutrition: effect on production performance and health. Animals (Basel). 2019;9(8):573. https://doi.org/10.3390/ani9080573.

    Article  PubMed  Google Scholar 

  6. Albensi BC. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front Cell Dev Biol. 2019;7:154. https://doi.org/10.3389/fcell.2019.00154.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Armenta RE, Valentine MC. Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. J Am Oil Chem Soc. 2013;90(2):167–82. https://doi.org/10.1007/s11746-012-2154-3.

    Article  CAS  Google Scholar 

  8. Asher A, Tintle NL, Myers M, Lockshon L, Bacareza H, Harris WS. Blood omega-3 fatty acids and death from COVID-19: A pilot study. Prostaglandins Leukot Essent Fatty Acids. 2021;166: 102250. https://doi.org/10.1016/j.plefa.2021.102250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azin E, Moghimi H, Dastgheib SMM, Darvishi F. Biovalorization of wastewater of fish canning process by Yarrowia lipolytica for biodiesel and animal feed supplement production. Biomass Convers Biorefin. 2022. https://doi.org/10.1007/s13399-022-03025-8.

    Article  Google Scholar 

  10. Bai M, Sen B, Wen S, Ye H, He Y, Zhang X, et al. Culturable diversity of thraustochytrids from coastal waters of Qingdao and their fatty acids. Mar Drugs. 2022;20(4):229. https://doi.org/10.3390/md20040229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balić A, Vlašić D, Žužul K, Marinović B, Bukvić MZ. Omega-3 versus omega-6 polyunsaturated fatty acids in the prevention and treatment of inflammatory skin diseases. Int J Mol Sci. 2020;21(3):741. https://doi.org/10.3390/ijms21030741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ballout RA, Sviridov D, Bukrinsky MI, Remaley AT. The lysosome: a potential juncture between SARS-CoV-2 infectivity and Niemann–-Pick disease type C, with therapeutic implications. FASEB J. 2020;34(6):7253–64. https://doi.org/10.1096/fj.202000654R.

    Article  CAS  PubMed  Google Scholar 

  13. Basak S, Duttaroy AK. Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients. 2020. https://doi.org/10.3390/nu12071913.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Maternal supply of both arachidonic and docosahexaenoic acids is required for optimal neurodevelopment. Nutrients. 2021;13(6):2061. https://doi.org/10.3390/nu13062061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Basak S, Vilasagaram S, Duttaroy AK. Maternal dietary deficiency of n-3 fatty acids affects metabolic and epigenetic phenotypes of the developing fetus. Prostaglandins Leukot Essent Fatty Acids. 2020;158: 102109. https://doi.org/10.1016/j.plefa.2020.102109.

    Article  CAS  PubMed  Google Scholar 

  16. Bazinet RP, Chu MW. Omega-6 polyunsaturated fatty acids: is a broad cholesterol-lowering health claim appropriate? CMAJ. 2014;186(6):434–9. https://doi.org/10.1503/cmaj.130253.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Belury MA. Conjugated linoleic acids in type 2 diabetes mellitus: implications and potential mechanisms. In: Advances in conjugated linoleic acid research. AOCS Publishing; 2020. p. 302–15.

  18. Berger A. Oil, containing the anti-inflammatory fatty acid sciadonic acid, improves skin barrier function in a skin irritation model in healthy female subjects. Lipids Health Dis. 2022;21(1):1–15.

    Article  Google Scholar 

  19. Bhattacharjya R, Kiran Marella T, Tiwari A, Saxena A, Kumar Singh P, Mishra B. Bioprospecting of marine diatoms Thalassiosira, Skeletonema and Chaetoceros for lipids and other value-added products. Bioresour Technol. 2020;318: 124073. https://doi.org/10.1016/j.biortech.2020.124073.

    Article  CAS  PubMed  Google Scholar 

  20. Birkic N, Azar T, Maddipati KR, Minic Z, Reynolds CA. Excessive dietary linoleic acid promotes plasma accumulation of pronociceptive fatty acyl lipid mediators. Sci Rep. 2022;12(1):17832. https://doi.org/10.1038/s41598-022-21823-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bishnoi S, Mudgil D. Current concepts and prospects of herbal nutraceutical. Handb Nutraceuticals Nat Prod Biol Med Nutr Prop Appl. 2022;1:189–204.

    CAS  Google Scholar 

  22. Blasio M, Balzano S. Fatty acids derivatives from eukaryotic microalgae, pathways and potential applications. Front Microbiol. 2021;12:2689. https://doi.org/10.3389/fmicb.2021.718933.

    Article  Google Scholar 

  23. Brault HS. Dietary intakes of saturated, polyunsaturated, monounsaturated, omega-6, and omega-3 fatty acids in relation to self-reported anxiety, self-reported depression, and risk for clinical depression in the civilian, noninstitutionalized adult population in the United States [doctoral dissertation]; 2021.

  24. Castejón N, Luna P, Señoráns FJ. Microencapsulation by spray drying of omega-3 lipids extracted from oilseeds and microalgae: effect on polyunsaturated fatty acid composition. LWT. 2021;148: 111789. https://doi.org/10.1016/j.lwt.2021.111789.

    Article  CAS  Google Scholar 

  25. Chauhan AS, Chen CW, Tambat VS, Singhania RR, Chang JS, Dong CD, Patel AK. Bioprocess engineering to produce essential polyunsaturated fatty acids from Thraustochytrium sp. Bioresour Technol. 2023;23: 129209. https://doi.org/10.1016/j.biortech.2023.129209.

    Article  CAS  Google Scholar 

  26. Chauhan AS, Chen CW, Yadav H, Parameswaran B, Singhania RR, Dong CD, Patel AK. Assessment of thraustochytrids potential for carotenoids, terpenoids and polyunsaturated fatty acids biorefinery. J Food Sci Technol. 2023;28:1–3. https://doi.org/10.1007/s13197-023-05740-0.

    Article  CAS  Google Scholar 

  27. Chauhan AS, Patel AK, Chen CW, Chang JS, Michaud P, Dong CD, Singhania RR. Enhanced production of high-value polyunsaturated fatty acids (PUFAs) from potential thraustochytrid Aurantiochytrium sp. Bioresour Technol. 2023;1(370): 128536. https://doi.org/10.1016/j.biortech.2022.128536.

    Article  CAS  Google Scholar 

  28. Chen YH, Ong CC, Lin TY. Effect of sea salt and taro waste on fungal mortierella alpina cultivation for arachidonic acid-rich lipid production. Fermentation. 2022;8(2):81. https://doi.org/10.3390/fermentation8020081.

    Article  CAS  Google Scholar 

  29. Collodel G, Castellini C, Lee JCY, Signorini C. Relevance of fatty acids to sperm maturation and quality. Oxid Med Cell Longev. 2020;2020:7038124. https://doi.org/10.1155/2020/7038124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Colonia BSO, de Melo Pereira GV, Soccol CR. Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: a review and patent landscape. Trends Food Sci Technol. 2020;99:244–56. https://doi.org/10.1016/j.tifs.2020.03.007.

    Article  CAS  Google Scholar 

  31. Cui Y, Thomas-Hall SR, Chua ET, Schenk PM. Development of a Phaeodactylum tricornutum biorefinery to sustainably produce omega-3 fatty acids and protein. J Clean Prod. 2021;300: 126839. https://doi.org/10.1016/j.jclepro.2021.126839.

    Article  CAS  Google Scholar 

  32. da Rochaa ACF, Cavalcantea JLP. Evaluation of the consumption of omega 3 fatty acid in Brazilian pregnant women: a cross-sectional study.

  33. Dachev M, Bryndová J, Jakubek M, Moučka Z, Urban M. The effects of conjugated linoleic acids on cancer. Processes. 2021;9(3):454. https://doi.org/10.3390/pr9030454.

    Article  CAS  Google Scholar 

  34. Davison KM, Lung Y, Lin SL, Tong H, Kobayashi KM, Fuller-Thomson E. Psychological distress in older adults linked to immigrant status, dietary intake, and physical health conditions in the Canadian Longitudinal Study on Aging (CLSA). J Affect Disord. 2020;265:526–37. https://doi.org/10.1016/j.jad.2020.01.024.

    Article  PubMed  Google Scholar 

  35. De Cosmi V, Mazzocchi A, Turolo S, Syren ML, Milani GP, Agostoni C. Long-chain polyunsaturated fatty acids supplementation and respiratory infections. Ann Nutr Metab. 2022;78(1):8–15.

    Google Scholar 

  36. Dean AJ, Bor W, Adam K, Bowling FG, Bellgrove MA. A randomized, controlled, crossover trial of fish oil treatment for impulsive aggression in children and adolescents with disruptive behavior disorders. J Child Adolesc Psychopharmacol. 2014;24(3):140–8. https://doi.org/10.1089/cap.2013.0093.

    Article  CAS  PubMed  Google Scholar 

  37. den Hartigh LJ. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: a review of pre-clinical and human trials with current perspectives. Nutrients. 2019;11(2):370. https://doi.org/10.3390/nu11020370.

    Article  CAS  Google Scholar 

  38. Didrihsone E, Dubencovs K, Grube M, Shvirksts K, Suleiko A, Suleiko A, et al. Crypthecodinium cohnii growth and omega fatty acid production in mediums supplemented with extract from recycled biomass. Mar Drugs. 2022;20(1):68. https://doi.org/10.3390/md20010068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Djuricic I, Calder PC. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients. 2021;13(7):2421. https://doi.org/10.3390/nu13072421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dorni C, Sharma P, Saikia G, Longvah T. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 2018;238:9–15. https://doi.org/10.1016/j.foodchem.2017.05.072.

    Article  CAS  PubMed  Google Scholar 

  41. Du F, Wang YZ, Xu YS, Shi TQ, Liu WZ, Sun XM, et al. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnol Adv. 2021;48: 107725. https://doi.org/10.1016/j.biotechadv.2021.107725.

    Article  CAS  PubMed  Google Scholar 

  42. Dyal SD, Narine SS. Implications for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res Int. 2005;38(4):445–67. https://doi.org/10.1016/j.foodres.2004.11.002.

    Article  CAS  Google Scholar 

  43. Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa SF, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res. 2022. https://doi.org/10.1016/j.plipres.2022.101165.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Epure A, Anastasoi V, Cheta DM. Correlation between the presence of metals with potential for intoxication, omega 3 deficiency, increased omega 6: omega 3 ratio and their associated symptoms. Rom Med J. 2022;69(2):72–9. https://doi.org/10.37897/RMJ.2022.2.5.

    Article  Google Scholar 

  45. Estupiñán M, Hernández I, Saitua E, Bilbao ME, Mendibil I, Ferrer J, Alonso-Sáez L. Novel Vibrio spp. strains producing omega-3 fatty acids isolated from coastal seawater. Mar Drug. 2020;18(2):99. https://doi.org/10.3390/md18020099.

    Article  CAS  Google Scholar 

  46. Fabiani H, Mudjihartini N, Lestari W. Low dietary omega-6 to omega-3 fatty acid intake ratio enhances adiponectin level in obesity. World Nutr J. 2021;5(1):30–9. https://doi.org/10.25220/WNJ.V05.i1.0005.

    Article  Google Scholar 

  47. Fazili ABA, Shah AM, Zan X, Naz T, Nosheen S, Nazir Y, et al. Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb Cell Factories. 2022;21(1):1–19.

    Article  Google Scholar 

  48. Ferramosca A, Zara V. Diet and male fertility: the impact of nutrients and antioxidants on sperm energetic metabolism. Int J Mol Sci. 2022;23(5):2542. https://doi.org/10.3390/ijms23052542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferreira GF, Ríos Pinto LF, Carvalho PO, Coelho MB, Eberlin MN, Maciel Filho R, et al. Correction to: biomass and lipid characterization of microalgae genera Botryococcus, Chlorella, and Desmodesmus aiming high-value fatty acid production. Biomass Convers Biorefin. 2022;12:2333.

    Article  Google Scholar 

  50. Freese E, Rütters H, Köster J, Rullkötter J, Sass H. Gammaproteobacteria as a possible source of eicosapentaenoic acid in anoxic intertidal sediments. Microb Ecol. 2009;57:444–54. https://doi.org/10.1007/s00248-008-9443-2.

    Article  CAS  PubMed  Google Scholar 

  51. Frøkiær H, Andersen AD, Damsgaard LL, C.T. Fish oil in combination with high or low intakes of linoleic acid lowers plasma triacylglycerols but does not affect other cardiovascular risk markers in healthy men. J Nutr. 2008;138(6):1061–6.

    Article  PubMed  Google Scholar 

  52. Froyen E, Burns-Whitmore B. The effects of linoleic acid consumption on lipid risk markers for cardiovascular disease in healthy individuals: a review of human intervention trials. Nutrients. 2020;12(8):2329. https://doi.org/10.3390/nu12082329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fu Z, Yan W, Chen CT, Nilsson AK, Bull E, Allen W, et al. Omega-3/Omega-6 long-chain fatty acid imbalance in Phase I retinopathy of prematurity. Nutrients. 2022;14(7):1333. https://doi.org/10.3390/nu14071333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ghani U, Naeem M, Rafeeq H, Imtiaz U, Amjad A, Ullah S, et al. A novel approach towards nutraceuticals and biomedical applications. Sch Int J Biochemist. 2019;2:245–52.

    Article  Google Scholar 

  55. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res. 2020;7(1):1.

    CAS  Google Scholar 

  56. Gutiérrez S, Svahn SL, Johansson ME. Effects of omega-3 fatty acids on immune cells. Int J Mol Sci. 2019;20(20):5028. https://doi.org/10.3390/ijms20205028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ha NC, Hong DD. Optimization of cultural conditions for omega 3–6 fatty acids and carotenoids production by \textit {Schizochytrium mangrovei} TB17. Acad J Biol Sci. 2022;44(1):11–28.

    Article  Google Scholar 

  58. Hamilton ML, Haslam RP, Napier JA, Sayanova O. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng. 2014;22:3–9. https://doi.org/10.1016/j.ymben.2013.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: a review. J Adv Res. 2018;11:23–32. https://doi.org/10.1016/j.jare.2018.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hathaway D, Pandav K, Patel M, Riva-Moscoso A, Singh BM, Patel A, et al. Omega 3 fatty acids and COVID-19: a comprehensive review. Infect Chemother. 2020;52(4):478–95. https://doi.org/10.3947/ic.2020.52.4.478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hayashi S, Satoh Y, Ogasawara Y, Maruyama C, Hamano Y, Ujihara T, et al. Control mechanism for cis double-bond formation by polyunsaturated fatty-acid synthases. Angew Chem Int Ed Engl. 2019;58(8):2326–30. https://doi.org/10.1002/anie.201812623.

    Article  CAS  PubMed  Google Scholar 

  62. Hayashi Y, Shimamura A, Ishikawa T, Fujiwara Y, Ichi I. FADS2 inhibition in essential fatty acid deficiency induces hepatic lipid accumulation via impairment of very low-density lipoprotein (VLDL) secretion. Biochem Biophys Res Commun. 2018;496(2):549–55. https://doi.org/10.1016/j.bbrc.2018.01.064.

    Article  CAS  PubMed  Google Scholar 

  63. He Q, Chen Y, Wang Z, He H, Yu P. Cellular uptake, metabolism and sensing of long-chain fatty acids. Front Biosci. 2023;28(1):10. https://doi.org/10.31083/j.fbl2801010.

    Article  CAS  Google Scholar 

  64. Henderson G, Crofts C, Schofield G. Linoleic acid and diabetes prevention. Lancet Diabetes Endocrinol. 2018;6(1):12–3. https://doi.org/10.1016/S2213-8587(17)30404-7.

    Article  PubMed  Google Scholar 

  65. Hodge L, Salome CM, Hughes JM, Liu-Brennan D, Rimmer J, Allman M, et al. Effect of dietary intake of omega-3 and omega-6 fatty acids on severity of asthma in children. Eur Respir J. 1998;11(2):361–5. https://doi.org/10.1183/09031936.98.11020361.

    Article  CAS  PubMed  Google Scholar 

  66. Hong T, Zou J, Yang J, Liu H, Cao Z, He Y, Feng D. Curcumin protects against bisphenol A-induced hepatic steatosis by inhibiting cholesterol absorption and synthesis in CD-1 mice. Food Sci Nutr. 2023;11:5091–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hyon JY, Han SB. The protective effect of polyunsaturated fatty acids against dry eye disease: a literature review. Appl Sci. 2021;11(10):4519. https://doi.org/10.3390/app11104519.

    Article  CAS  Google Scholar 

  68. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2018;132:41–8. https://doi.org/10.1016/j.plefa.2018.03.004.

    Article  CAS  PubMed  Google Scholar 

  69. Jaritkhuan S, Suanjit S. Species diversity and polyunsaturated fatty acid content of thraustochytrids from fallen mangrove leaves in Chon Buri Province, Thailand. Agric Nat Resour. 2018;52(1):24–32. https://doi.org/10.1016/j.anres.2018.05.002.

    Article  Google Scholar 

  70. Jia YL, Wang LR, Zhang ZX, Gu Y, Sun XM. Recent advances in biotechnological production of polyunsaturated fatty acids by Yarrowia lipolytica. Crit Rev Food Sci Nutr. 2021;62:8920–34.

    Article  PubMed  Google Scholar 

  71. Jónasdóttir SH. Fatty acid profiles and production in marine phytoplankton. Mar Drugs. 2019;17(3):151. https://doi.org/10.3390/md17030151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jovanovic S, Dietrich D, Becker J, Kohlstedt M, Wittmann C. Microbial production of polyunsaturated fatty acids—high-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr Opin Biotechnol. 2021;69:199–211. https://doi.org/10.1016/j.copbio.2021.01.009.

    Article  CAS  PubMed  Google Scholar 

  73. Juras J, Lovrić B, Blajić M, Zmijanović I, Krištofić B. The role of inositol, folic acid and polyunsaturated fatty acids in pregnancy and fetal development. [Hrana u zdravlju i bolesti: znanstveno-stručni časopis za nutricionizam i dijetetiku10]. 2021;2:97–103.

  74. Kalidasan K, Vinithkumar NV, Peter DM, Dharani G, Dufossé L. Thraustochytrids of Mangrove Habitats from Andaman Islands: species Diversity, PUFA Profiles and Biotechnological Potential. Drugs. 2021;19(10):571.

    CAS  Google Scholar 

  75. Kannan N, Rao AS, Nair A. Microbial production of omega-3 fatty acids: an overview. J Appl Microbiol. 2021;131(5):2114–30. https://doi.org/10.1111/jam.15034.

    Article  CAS  PubMed  Google Scholar 

  76. Keyes GS, Maiden K, Ramsden CE. Stable analogs of 13-hydroxy-9, 10-trans-epoxy-(11E)-octadecenoate (13, 9-HEL), an oxidized derivative of linoleic acid implicated in the epidermal skin barrier. Prostaglandins Leukot Essent Fatty Acids. 2021;174: 102357. https://doi.org/10.1016/j.plefa.2021.102357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khalid W, Gill P, Arshad MS, Ali A, Ranjha MMAN, Mukhtar S, et al. Functional behavior of DHA and EPA in the formation of babies brain at different stages of age, and protect from different brain-related diseases. Int J Food Prop. 2022;25(1):1021–44. https://doi.org/10.1080/10942912.2022.2070642.

    Article  Google Scholar 

  78. Khalili L, Valdes-Ramos R, Harbige LS. Effect of n-3 (omega-3) polyunsaturated fatty acid supplementation on metabolic and inflammatory biomarkers and body weight in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of RCTs. Metabolites. 2021;11(11):742. https://doi.org/10.3390/metabo11110742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kikut J, Komorniak N, Ziętek M, Palma J, Szczuko M. Inflammation with the participation of arachidonic (ARA) and linoleic acid (LA) derivatives (HETEs and HODEs) is necessary in the course of a normal reproductive cycle and pregnancy. J Reprod Immunol. 2020;141: 103177. https://doi.org/10.1016/j.jri.2020.103177.

    Article  CAS  PubMed  Google Scholar 

  80. Koreti D, Kosre A, Jadhav SK, Chandrawanshi NK. A comprehensive review on oleaginous bacteria: an alternative source for biodiesel production. Bioresour Bioproc. 2022;9(1):1–9. https://doi.org/10.1186/s40643-022-00527-1.

    Article  Google Scholar 

  81. Kountouras J, Doulberis M, Kazakos E, Tzika SK, Vardaka E, Liatsos C, et al. Correspondence on’Omega-3 supplementation and cardiovascular disease: formulation-based systematic review and meta-analysis with trial sequential analysis’ by Rizos. Heart. 2022;108(8):657. https://doi.org/10.1136/heartjnl-2020-318776.

    Article  PubMed  Google Scholar 

  82. Kowalska-Olędzka E, Czarnecka M, Baran A. Epidemiology of atopic dermatitis in Europe. J Drug Assess. 2019;8(1):126–8. https://doi.org/10.1080/21556660.2019.1619570.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Krishna Perumal P, Dong CD, Chauhan AS, Anisha GS, Chen CW, Singhania RR, Patel AK. Advances in oligosaccharide production from algal sources and their emerging health prospects. Biotechnol Adv. 2023;67: 108195.

    Article  CAS  PubMed  Google Scholar 

  84. Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application. Front Bioeng Biotechnol. 2020;8:914. https://doi.org/10.3389/fbioe.2020.00914.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Laddha H, Pawar PR, Prakash G. Bioconversion of waste acid oil to docosahexaenoic acid by integration of ex novo and de novo fermentation in Aurantiochytrium limacinum. Bioresour Technol. 2021;332: 125062. https://doi.org/10.1016/j.biortech.2021.125062.

    Article  CAS  PubMed  Google Scholar 

  86. Leikin-Frenkel AI. Is there a role for alpha-linolenic acid in the fetal programming of health? J Clin Med. 2016;5(4):40. https://doi.org/10.3390/jcm5040040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leyton A, Flores L, Shene C, Chisti Y, Larama G, Asenjo JA, et al. Antarctic thraustochytrids as sources of carotenoids and high-value fatty acids. Mar Drugs. 2021;19(7):386. https://doi.org/10.3390/md19070386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Límová M. Active wound coverings: bioengineered skin and dermal substitutes. Surg Clin N Am. 2010;90(6):1237–55. https://doi.org/10.1016/j.suc.2010.08.004.

    Article  PubMed  Google Scholar 

  89. Lin HC, Li WH, Chen CC, Cheng TH, Lan YH, Huang MD, Chang HY, et al. Diverse enzymes with industrial applications in four thraustochytrid genera. Front Microbiol. 2020;11:2574.

    Article  Google Scholar 

  90. Louca P, Murray B, Klaser K, Graham MS, Mazidi M, Leeming ER, et al. Modest effects of dietary supplements during the COVID-19 pandemic: insights from 445 850 users of the COVID-19 Symptom Study app. BMJ Nutr Prev Health. 2021;4(1):149–57. https://doi.org/10.1136/bmjnph-2021-000250.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mądry E, Malesza IJ, Subramaniapillai M, Czochralska-Duszyńska A, Walkowiak M, Miśkiewicz-Chotnicka A, et al. Body fat changes and liver safety in obese and overweight women supplemented with conjugated linoleic acid: a 12-week randomised, double-blind, placebo-controlled trial. Nutrients. 2020;12(6):1811. https://doi.org/10.3390/nu12061811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maliszewska K, Adamska-Patruno E, Miniewska K, Bauer W, Mojsak M, Kretowski A. PET/MRI-evaluated brown adipose tissue activity may be related to dietary MUFA and omega-6 fatty acids intake. Sci Rep. 2022;12(1):4112. https://doi.org/10.1038/s41598-022-08125-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maltsev Y, Maltseva K. Fatty acids of microalgae: diversity and applications. Rev Environ Sci Biotechnol. 2021;20:515–47. https://doi.org/10.1007/s11157-021-09571-3.

    Article  CAS  Google Scholar 

  94. Manolis AA, Manolis TA, Melita H, Manolis AS. Features of a balanced healthy diet with cardiovascular and other benefits. Curr Vasc Pharmacol. 2023;21(3):163–84. https://doi.org/10.2174/1570161121666230327135916.

    Article  CAS  PubMed  Google Scholar 

  95. Mehni ME, Samadlouie HR, Rajaei A. Enhancement of oil productivity of mortierella alpine and investigation into the potential of pickering oil-in-water emulsions to improve its oxidative stability. Food Sci Nutr. 2021. https://doi.org/10.1002/fsn3.2651.

    Article  Google Scholar 

  96. Miura K, Way M, Jiyad Z, Marquart L, Plasmeijer EI, Campbell S, et al. Omega-3 fatty acid intake and decreased risk of skin cancer in organ transplant recipients. Eur J Nutr. 2021;60(4):1897–905. https://doi.org/10.1007/s00394-020-02378-y.

    Article  CAS  PubMed  Google Scholar 

  97. Moreira ASP, Gonçalves J, Conde TA, Couto D, Melo T, Maia IB, et al. Chrysotila pseudoroscoffensis as a source of high-value polar lipids with antioxidant activity: a lipidomic approach. Algal Res. 2022;66: 102756. https://doi.org/10.1016/j.algal.2022.102756.

    Article  Google Scholar 

  98. Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell. 2013;153(1):112–25. https://doi.org/10.1016/j.cell.2013.02.027.

    Article  CAS  PubMed  Google Scholar 

  99. Nascimento SM, Pisani LP. Update on the influence of fatty acids in epigenetic programming mechanisms. Nutrire. 2021. https://doi.org/10.1186/s41110-021-00142-8.

    Article  Google Scholar 

  100. Nursyifa Fadiyah N, Megawati G, Erlangga LD. Potential of omega 3 supplementation for coronavirus disease 2019 (COVID-19): a scoping review. Int J Gen Med. 2022;15:3915–22. https://doi.org/10.2147/IJGM.S357460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. O’Reilly ME, Lenighan YM, Dillon E, Kajani S, Curley S, Bruen R, et al. Conjugated linoleic acid and alpha linolenic acid improve cholesterol homeostasis in obesity by modulating distinct hepatic protein pathways. Mol Nutr Food Res. 2020;64(7): e1900599. https://doi.org/10.1002/mnfr.201900599.

    Article  CAS  PubMed  Google Scholar 

  102. Odutuga AA, Adisa AO, Obaleye JA. Zinc and essential fatty acids modulate bone growth and metabolism in rats. Biokemistri. 2019;7(2).

  103. Ogata R, Mori S, Kishi S, Sasaki R, Iwata N, Ohmori H, et al. Linoleic acid upregulates Microrna-494 to induce quiescence in colorectal cancer. Int J Mol Sci. 2021;23(1):225. https://doi.org/10.3390/ijms23010225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oh SY, Lee SJ, Jung YH, Lee HJ, Han HJ. Arachidonic acid promotes skin wound healing through induction of human MSC migration by MT3-MMP-mediated fibronectin degradation. Cell Death Dis. 2015;6(5): e1750. https://doi.org/10.1038/cddis.2015.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Parchuri P, Pappanoor A, Naeem A, Durrett TP, Welti R, Sreedhar RV. Lipidome analysis and characterization of Buglossoides arvensis acyltransferases that incorporate polyunsaturated fatty acids into triacylglycerols. Plant Sci. 2022;324: 111445. https://doi.org/10.1016/j.plantsci.2022.111445.

    Article  CAS  PubMed  Google Scholar 

  106. Park H, Kwak M, Seo J, Ju J, Heo S, Park S, et al. Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess Biosyst Eng. 2018;41:1355–70. https://doi.org/10.1007/s00449-018-1963-7.

    Article  CAS  PubMed  Google Scholar 

  107. Parke MA, Perez-Sanchez A, Zamil DH, Katta R. Diet and skin barrier: the role of dietary interventions on skin barrier function. Dermatol Pract Concept. 2021;11(1): e2021132. https://doi.org/10.5826/dpc.1101a132.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Parsons S, Allen MJ, Chuck CJ. Coproducts of algae and yeast-derived single cell oils: a critical review of their role in improving biorefinery sustainability. Biores Technol. 2020;303(303): 122862. https://doi.org/10.1016/j.biortech.2020.122862.

    Article  CAS  Google Scholar 

  109. Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, et al. An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms. 2020;8(3):434. https://doi.org/10.3390/microorganisms8030434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Patel A, Pruthi V, Pruthi PA. Synchronized nutrient stress conditions trigger the diversion of CDP-DG pathway of phospholipids synthesis towards de novo TAG synthesis in oleaginous yeast escalating biodiesel production. Energy. 2017;139:962–74. https://doi.org/10.1016/j.energy.2017.08.052.

    Article  CAS  Google Scholar 

  111. Patel AK, Albarico FPJB, Perumal PK, Vadrale AP, et al. Algae as an emerging source of bioactive pigments. Bioresour Technol. 2022;351: 126910.

    Article  CAS  PubMed  Google Scholar 

  112. Patel AK, Chauhan AS, Kumar P, Michaud P, Gupta VK, Chang JS, et al. Emerging prospects of microbial production of omega fatty acids: recent updates. Bioresour Technol. 2022;360: 127534. https://doi.org/10.1016/j.biortech.2022.127534.

    Article  CAS  PubMed  Google Scholar 

  113. Patel AK, Choi YY, Sim SJ. Emerging prospects of mixotrophic microalgae: way forward to bioprocess sustainability, environmental remediation and cost-effective biofuels. Bioresour Technol. 2020;300: 122741.

    Article  CAS  PubMed  Google Scholar 

  114. Patel AK, John J, Hong ME, Sim SJ. A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels. Bioresour Technol. 2020;313: 123681. https://doi.org/10.1016/j.biortech.2020.123681.

    Article  CAS  PubMed  Google Scholar 

  115. Patel AK, John J, Hong ME, Sim SJ. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresour Technol. 2019;282:245–53. https://doi.org/10.1016/j.biortech.2019.03.024.

    Article  CAS  PubMed  Google Scholar 

  116. Patel AK, Katiyar R, Chen CW, Singhania RR, Awasthi MK, Bhatia SK, Bhaskar T, Dong CD. Antibiotic bioremediation by new generation biochar: Recent updates. Bioresour Technol. 2022;358: 127384. https://doi.org/10.1016/j.biortech.2022.127384.

    Article  CAS  PubMed  Google Scholar 

  117. Patel AK, Kumar P, Chen CW, Tambat VS, Nguyen TB, Hou CY, Chang JS, Dong CD, Singhania RR. Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass. Bioresour Technol. 2022;363: 128009. https://doi.org/10.1016/j.biortech.2022.128009.

    Article  CAS  PubMed  Google Scholar 

  118. Patel AK, Singhania RR, Awasthi M, Varjani S, Bhatia SK, Tsai ML, Hseih SL, Chen CW, Dong CD. Emerging role of macro- and microalgae as prebiotic. Microb Cell Fact. 2021. https://doi.org/10.1186/s12934-021-01601-7.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Patel AK, Singhania RR, Chen CW, Dong CD. Algal polysaccharide: current status and future perspectives. Phytochem Rev. 2022. https://doi.org/10.1007/s11101-021-09799-5.

    Article  Google Scholar 

  120. Patel AK, Singhania RR, Chen CW, Tseng YS, Kuo CH, Wu CH, Dong CD. Advances in micro-and nano bubbles technology for application in biochemical processes. Environ Technol Innov. 2021;23: 101729. https://doi.org/10.1016/j.eti.2021.101729.

    Article  CAS  Google Scholar 

  121. Patel AK, Singhania RR, Dong CD, Obulisami PK, Sim SJ. Mixotrophic biorefinery: a promising algal platform for sustainable biofuels and high value coproducts. Renew Sust Energ Rev. 2021;152: 111669. https://doi.org/10.1016/j.rser.2021.111669.

    Article  CAS  Google Scholar 

  122. Patel AK, Singhania RR, Frank Paolo JBA, Pandey A, Chen CW, Dong CD. Organic wastes bioremediation and its changing prospects. Sci Total Environ. 2022;824: 153889. https://doi.org/10.1016/j.scitotenv.2022.153889.

    Article  CAS  PubMed  Google Scholar 

  123. Patel AK, Singhania RR, Pal A, Chen CW, Dong CD. Advances on tailored biochars for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. Sci Total Environ. 2022;824(817): 153054.

    Article  Google Scholar 

  124. Patel AK, Singhania RR, Sim SJ, Dong CD. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. Bioresour Technol. 2021;320: 124421. https://doi.org/10.1016/j.biortech.2020.124421.

    Article  CAS  PubMed  Google Scholar 

  125. Patel AK, Tseng YS, Singhania RR, Chen CW, Chang JS, Dong CD. Novel application of microalgae platform for biodesalination process: a review. Bioresour Technol. 2021;337: 125343. https://doi.org/10.1016/j.biortech.2021.125343.

    Article  CAS  Google Scholar 

  126. Patel AK, Vadrale AP, Tseng YS, Chen CW, Dong CD, Singhania RR. Bioprospecting of marine microalgae from Kaohsiung seacoast for lutein and lipid production. Bioresour Technol. 2022;351: 126928. https://doi.org/10.1016/j.biortech.2022.126928.

    Article  CAS  PubMed  Google Scholar 

  127. Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, Vadrale AP, Dong CD, Singhania RR. Recent advancements in astaxanthin production from microalgae: a review. Bioresour Technol. 2022;364: 128030.

    Article  CAS  PubMed  Google Scholar 

  128. Peppone LJ, Inglis JE, Mustian KM, Heckler CE, Padula GDA, Mohile SG, et al. Multicenter randomized controlled trial of omega-3 fatty acids versus omega-6 fatty acids for the control of cancer-related fatigue among breast cancer survivors. JNCI Cancer Spectr. 2019;3(2):pkz005. https://doi.org/10.1093/jncics/pkz005.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pifferi F, Laurent B, Plourde M. Lipid transport and metabolism at the blood–brain interface: implications in health and disease. Front Physiol. 2021;12: 645646. https://doi.org/10.3389/fphys.2021.645646.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Polavarapu S, Dwarakanath BS, Das UN. Arachidonic acid activates extrinsic apoptotic pathway to enhance tumoricidal action of bleomycin against IMR-32 cells. Prostaglandins Leukot Essent Fatty Acids. 2018;132:16–22. https://doi.org/10.1016/j.plefa.2018.04.001.

    Article  CAS  PubMed  Google Scholar 

  131. Ponnampalam EN, Sinclair AJ, Holman BWB. The sources, synthesis and biological actions of omega-3 and omega-6 fatty acids in red meat: an overview. Foods. 2021;10(6):1358. https://doi.org/10.3390/foods10061358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Prasad P, Anjali P, Sreedhar RV. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit Rev Food Sci Nutr. 2021;61(10):1725–37.

    Article  CAS  PubMed  Google Scholar 

  133. Quinn JM, Gillespie MT. Modulation of osteoclast formation. Biochem Biophys Res Commun. 2005;328(3):739–45. https://doi.org/10.1016/j.bbrc.2004.11.076.

    Article  CAS  PubMed  Google Scholar 

  134. Ramsden CE, Domenichiello AF, Yuan ZX, Sapio MR, Keyes GS, Mishra SK, et al. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch. Sci Signal. 2017;10(493): eaal5241. https://doi.org/10.1126/scisignal.aal5241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E. Microalgae n-3 PUFAs production and use in food and feed industries. Mar Drugs. 2021;19(2):113. https://doi.org/10.3390/md19020113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rosenson RS, Brewer HB, Ansell BJ, Barter P, Chapman MJ, Heinecke JW, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13(1):48–60. https://doi.org/10.1038/nrcardio.2015.124.

    Article  CAS  PubMed  Google Scholar 

  137. Saejung C, Puensungnern L. Evaluation of molasses-based medium as a low cost medium for carotenoids and fatty acid production by photosynthetic bacteria. Waste and Biomass Valoriz. 2020;11:143–52.

    Article  CAS  Google Scholar 

  138. Samakova A, Gazova A, Sabova N, Valaskova S, Jurikova M, Kyselovic J. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol Res. 2019;68(Suppl. 2):S131–8. https://doi.org/10.33549/physiolres.934345.

    Article  CAS  PubMed  Google Scholar 

  139. Santin A, Balzano S, Russo MT, Palma Esposito F, Ferrante MI, Blasio M, et al. Microalgae-based PUFAs for food and feed: current applications, future possibilities, and constraints. J Mar Sci Eng. 2022;10(7):844. https://doi.org/10.3390/jmse10070844.

    Article  Google Scholar 

  140. Sayeda MA, Ali GH, El-Baz FK. Potential production of omega fatty acids from microalgae. Int J Pharm Sci Rev Res. 2015;34(2):210–5.

    CAS  Google Scholar 

  141. Sayegh F, Elazzazy A, Bellou S, Moustogianni A, Elkady AI, Baeshen MN, et al. Production of polyunsaturated single cell oils possessing antimicrobial and anticancer properties. Ann Microbiol. 2016;66:937–48. https://doi.org/10.1007/s13213-015-1176-0.

    Article  CAS  Google Scholar 

  142. Serini S, Calviello G. New insights on the effects of dietary omega-3 fatty acids on impaired skin healing in diabetes and chronic venous leg ulcers. Foods. 2021;10(10):2306. https://doi.org/10.3390/foods10102306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Serra JL, Rodrigues AMDC, de Freitas RA, Meirelles AJA, Darnet SH, Silva LHMD. Alternative sources of oils and fats from Amazonian plants: fatty acids, methyl tocols, total carotenoids and chemical composition. Food Res Int. 2019;116:12–9. https://doi.org/10.1016/j.foodres.2018.12.028.

    Article  CAS  PubMed  Google Scholar 

  144. Sertorio MN, de Souza EA, Pisani LP. Update on the influence of fatty acids in epigenetic programming mechanisms. Nutrire. 2021;46(2):1–11. https://doi.org/10.1186/s41110-021-00142-8.

    Article  CAS  Google Scholar 

  145. Shah A, Yang W, Mohamed H, Zhang Y, Song Y. Microbe: a hidden treasure of polyunsaturated fatty acids. Front Nutr. 2022;9: 827837.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Shah AM, Mohamed H, Zhang Z, Song Y. Isolation, characterization and fatty acid analysis of Gilbertella persicaria DSR1: a potential new source of high value single-cell oil. Biomass Bioenerg. 2021;151: 106156. https://doi.org/10.1016/j.biombioe.2021.106156.

    Article  CAS  Google Scholar 

  147. Shrestha N, Sleep SL, Cuffe JSM, Holland OJ, Perkins AV, Yau SY, et al. Role of Omega-6 and omega-3 fatty acids in fetal programming. Clin Exp Pharmacol Physiol. 2020;47(5):907–15. https://doi.org/10.1111/1440-1681.13244.

    Article  CAS  PubMed  Google Scholar 

  148. Silva MET, Martins MA, Leite MO, Milião GL, Coimbra JSR. Microalga Scenedesmus obliquus: extraction of bioactive compounds and antioxidant activity. Rev Cien Agronom. 2021. https://doi.org/10.5935/1806-6690.20210036.

    Article  Google Scholar 

  149. Sim SJ, John J, Hong ME, Patel AK. Split mixotrophy: a novel mixotrophic cultivation strategy to improve mixotrophic effects in microalgae cultivation. Bioresour Technol. 2019;291: 121820.

    Article  CAS  PubMed  Google Scholar 

  150. Simard M, Tremblay A, Morin S, Martin C, Julien P, Fradette J, et al. α-linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater. 2022;140:261–74. https://doi.org/10.1016/j.actbio.2021.11.021.

    Article  CAS  PubMed  Google Scholar 

  151. Šimat V. Nutraceuticals and pharmaceuticals from marine fish and invertebrates. Mar Drugs. 2021;19(7):401. https://doi.org/10.3390/md19070401.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8(3):128. https://doi.org/10.3390/nu8030128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Singh P, Guldhe A, Kumari S, Rawat I, Bux F. Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J. 2015;94:22–9. https://doi.org/10.1016/j.bej.2014.10.019.

    Article  CAS  Google Scholar 

  154. Skoracka K, Eder P, Łykowska-Szuber L, Dobrowolska A, Krela-Kaźmierczak I. Diet and nutritional factors in male (in) fertility—underestimated factors. J Clin Med. 2020;9(5):1400. https://doi.org/10.3390/jcm9051400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int J Mol Sci. 2018;19(11):3285. https://doi.org/10.3390/ijms19113285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sroczyk EA, Berniak K, Jaszczur M, Stachewicz U. Topical electrospun patches loaded with oil for effective gamma linoleic acid transport and skin hydration towards atopic dermatitis skincare. Chem Eng J. 2022;429: 132256. https://doi.org/10.1016/j.cej.2021.132256.

    Article  CAS  Google Scholar 

  157. Su G, Jiao K, Chang J, Li Z, Guo X, Sun Y, Zeng X, Lu Y, Lin L. Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresour Bioproc. 2016;3:33. https://doi.org/10.1186/s40643-016-0110-z.

    Article  Google Scholar 

  158. Suhaimi N, Maeda Y, Yoshino T, Tanaka T. Effects of fatty acid synthase-inhibitors on polyunsaturated fatty acid production in marine diatom Fistulifera solaris JPCC DA0580. J Biosci Bioeng. 2022;133(4):340–6. https://doi.org/10.1016/j.jbiosc.2021.12.014.

    Article  CAS  PubMed  Google Scholar 

  159. Suraiya S, Ahmmed MK, Haq M. Immunity boosting roles of biofunctional compounds available in aquafoods: a review. Heliyon. 2022;8(5): e09547. https://doi.org/10.1016/j.heliyon.2022.e09547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Suzuki A, Minamide M, Iwaya C, Ogata K, Iwata J. Role of metabolism in bone development and homeostasis. Int J Mol Sci. 2020;21(23):8992. https://doi.org/10.3390/ijms21238992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Szczepańska P, Hapeta P, Lazar Z. Advances in production of high-value lipids by oleaginous yeasts. Crit Rev Biotechnol. 2022;42(1):1–22. https://doi.org/10.1080/07388551.2021.1922353.

    Article  CAS  PubMed  Google Scholar 

  162. Taha AY. Linoleic acid–good or bad for the brain? NPJ Sci Food. 2020;4(1):1. https://doi.org/10.1038/s41538-019-0061-9.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Taipale S, Peltomaa E, Salmi P. Variation in ω-3 and ω-6 polyunsaturated fatty acids produced by different phytoplankton taxa at early and late growth phase. Biomolecules. 2020;10(4):559. https://doi.org/10.3390/biom10040559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tong H, Zhang S, Shen W, Chen H, Salazar C, Schneider A, et al. Lung function and short-term ambient air pollution exposure: differential impacts of omega-3 and omega-6 fatty acids. Ann Am Thorac Soc. 2022;19(4):583–93. https://doi.org/10.1513/AnnalsATS.202107-767OC.

    Article  PubMed  Google Scholar 

  165. Wang DD, Li Y, Chiuve SE, Stampfer MJ, Manson JE, Rimm EB, et al. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med. 2016;176(8):1134–45. https://doi.org/10.1001/jamainternmed.2016.2417.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wang X, He MJ, Chen XJ, Bai YT, Zhou G. Glaucocalyxin A impairs tumor growth via amplification of the ATF4/CHOP/CHAC1 cascade in human oral squamous cell carcinoma. J Ethnopharmacol. 2022;290: 115100. https://doi.org/10.1016/j.jep.2022.115100.

    Article  CAS  PubMed  Google Scholar 

  167. Wang Y, Shi J, Gong L. Gamma linolenic acid suppresses hypoxia-induced proliferation and invasion of non-small cell lung cancer cells by inhibition of HIF1α. Genes Genom. 2020;42(8):927–35. https://doi.org/10.1007/s13258-020-00961-5.

    Article  CAS  Google Scholar 

  168. Wang Z, Wang S, Feng Y, Wan W, Zhang H, Bai X, et al. Obtaining high-purity docosahexaenoic acid oil in thraustochytrid Aurantiochytrium through a combined metabolic engineering strategy. J Agric Food Chem. 2021;69(35):10215–22. https://doi.org/10.1021/acs.jafc.1c03781.

    Article  CAS  PubMed  Google Scholar 

  169. Weill P, Plissonneau C, Legrand P, Rioux V, Thibault R. May omega-3 fatty acid dietary supplementation help reduce severe complications in Covid-19 patients? Biochimie. 2020;179:275–80. https://doi.org/10.1016/j.biochi.2020.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wu X, Yang X, Liang Q, Xue X, Huang J, Wang J, et al. Drugs for the treatment of glaucoma: targets, structure–activity relationships and clinical research. Eur J Med Chem. 2021;226: 113842. https://doi.org/10.1016/j.ejmech.2021.113842.

    Article  CAS  PubMed  Google Scholar 

  171. Yamaguchi A, Stanger L, Freedman JC, Prieur A, Thav R, Tena J, et al. Supplementation with omega-3 or omega-6 fatty acids attenuates platelet reactivity in postmenopausal women. Clin Transl Sci. 2022;15(10):2378–91. https://doi.org/10.1111/cts.13366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yau SY, Yip YSL, Formolo DA, He S, Lee THY, Wen C, et al. Chronic consumption of a high linoleic acid diet during pregnancy, lactation and post-weaning period increases depression-like behavior in male, but not female offspring. Behav Brain Res. 2022;416: 113538. https://doi.org/10.1016/j.bbr.2021.113538.

    Article  CAS  PubMed  Google Scholar 

  173. Yoon SY, Ahn D, Hwang JY, Kang MJ, Chung SJ. Linoleic acid exerts antidiabetic effects by inhibiting protein tyrosine phosphatases associated with insulin resistance. J Funct Foods. 2021;83: 104532. https://doi.org/10.1016/j.jff.2021.104532.

    Article  CAS  Google Scholar 

  174. Youn K, Lee S, Jun M. Gamma-linolenic acid ameliorates Aβ-induced neuroinflammation through NF-κB and MAPK signalling pathways. J Funct Foods. 2018;42:30–7. https://doi.org/10.1016/j.jff.2017.12.065.

    Article  CAS  Google Scholar 

  175. Yu BS, Sung YJ, Choi HI, Sirohi R, Sim SJ. Concurrent enhancement of CO2 fixation and productivities of omega-3 fatty acids and astaxanthin in Haematococcus pluvialis culture via calcium-mediated homeoviscous adaptation and biomineralization. Bioresour Technol. 2021;340: 125720. https://doi.org/10.1016/j.biortech.2021.125720.

    Article  CAS  PubMed  Google Scholar 

  176. Yu Q, Liu Z, Xu H, Zhang B, Zhang M, Li M. TiO2 nanoparticles promote the production of unsaturated fatty acids (UFAs) fighting against oxidative stress in pichia pastoris. RSC Adv. 2015;5(51):41033–40. https://doi.org/10.1039/C5RA02366A.

    Article  CAS  Google Scholar 

  177. Zanoaga O, Jurj A, Raduly L, Cojocneanu-Petric R, Fuentes-Mattei E, Wu O, et al. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer. Exp Ther Med. 2018;15(2):1167–76. https://doi.org/10.3892/etm.2017.5515.

    Article  CAS  PubMed  Google Scholar 

  178. Zhan Q, Tian Y, Han L, Wang K, Wang J, Xue C. The opposite effects of Antarctic krill oil and arachidonic acid-rich oil on bone resorption in ovariectomized mice. Food Funct. 2020;11(8):7048–60. https://doi.org/10.1039/d0fo00884b.

    Article  CAS  PubMed  Google Scholar 

  179. Zhang S, Chen X, Sen B, Bai M, He Y, Wang G. Exogenous antioxidants improve the accumulation of saturated and polyunsaturated fatty acids in Schizochytrium sp. PKU#Mn4. Mar Drug. 2021;19(10):559. https://doi.org/10.3390/md19100559.

    Article  CAS  Google Scholar 

  180. Zhang T, Li M, Yang R, Zhang D, Guan J, Yu J, et al. Therapeutic efficacy of lipid emulsions of docetaxel-linoleic acid conjugate in breast cancer. Int J Pharm. 2018;546(1–2):61–9. https://doi.org/10.1016/j.ijpharm.2018.05.032.

    Article  CAS  PubMed  Google Scholar 

  181. Zhang Y, Chen H, Zhang W, Cai Y, Shan P, Wu D, et al. Arachidonic acid inhibits inflammatory responses by binding to myeloid differentiation factor-2 (MD2) and preventing MD2/toll-like receptor 4 signaling activation. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5): 165683. https://doi.org/10.1016/j.bbadis.2020.165683.

    Article  CAS  PubMed  Google Scholar 

  182. Zhao H, Lv M, Liu Z, Zhang M, Wang Y, Ju X, et al. High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota. Bioenerg Res. 2021;14(4):1196–206. https://doi.org/10.1007/s12155-020-10219-3.

    Article  CAS  Google Scholar 

  183. Zong G, Liu G, Willett WC, Wanders AJ, Alssema M, Zock PL, et al. Associations between linoleic acid intake and incident type 2 diabetes among US men and women. Diabetes Care. 2019;42(8):1406–13. https://doi.org/10.2337/dc19-0412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Ph.D. program of the Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University and Science and Technology.

Funding

RRS acknowledges NSTC, Taiwan, for funding support (Ref. No. NSTC 112-2222-E-992-006-MY2) and the National Kaohsiung University of Science and Technology 112 Annual Marine Characteristics Sustainable Development Research Program (Program code 112A14).

Author information

Authors and Affiliations

Authors

Contributions

ASC: writing—original draft, literature review; AKP: supervision, writing—review and editing; VN: literature review, draft preparation; RRS: supervision, writing—review and editing, funding acquisition; C-WC: supervision, writing—review, and editing; AKP: literature review, draft preparation; supervision; TR: literature review, draft preparation; C-DD: supervision, writing—review and editing.

Corresponding authors

Correspondence to Reeta Rani Singhania or Cheng-Di Dong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

In this article the affiliation details for Author Tirath Raj were incorrectly given as Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana Champaign, AESB, 1304 West Pennsylvania Avenue I, Urbana, IL 61801, USA but should have been Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, 1304 West Pennsylvania Avenue, Urbana, IL, 61801, USA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A.S., Patel, A.K., Nimker, V. et al. Biorefining of essential polyunsaturated fatty acids from microbial sources: current updates and prospects. Syst Microbiol and Biomanuf 4, 425–447 (2024). https://doi.org/10.1007/s43393-023-00207-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00207-x

Keywords

Navigation