Skip to main content

Advertisement

Log in

New perspectives of omega-3 fatty acids from diatoms

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Omega-3 fatty acids are polyunsaturated fatty acids that are vital for human food consumption and metabolism. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two long-chain polyunsaturated fatty acids (LC-PUFAs), are primarily obtained from diatoms in the oceanic food web. Though microalgae are the main producers of EPA and DHA, but currently, only few algal strains are known to produce large levels of EPA and DHA. The demand for nutraceuticals has significantly increased because of people’s increased awareness and health consciousness. Due to foods being the concentrated supply of omega-3 PUFAs (polyunsaturated fatty acids), this has increased the demands on aquatic sources of n-3 PUFAs. Micro-algal sources must be carefully examined due to the numerous drawbacks and difficulties of fish oils and the lack of DHA and EPA in plant sources. This review focuses on the current state of omega-3 PUFA (polyunsaturated fatty acids) production, sources, and market demand to provide an overview of sources that are being explored for sustainability as well as current and anticipated market trends in the omega-3 industry. This will make it possible for them to be produced on a wide scale for the benefit of human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Adarme-Vega TC, Lim DKY, Timmins M. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact. 2012. https://doi.org/10.1186/1475-2859-11-96.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J. The Galaxy platform for accessible, reproducible, and collaborative biomedical analyses. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkw343.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Afshin Ashkan Patrick JS, Kairsten AF, Leslie C, Giannina F, Joseph S, Erin C. Health effects of dietary risks in 195 countries. The Lancet. 2019. https://doi.org/10.1016/S0140-6736(19)30041-8.

    Article  Google Scholar 

  4. Ago K, Hayashi T, Ago M, Ogata M. The number of diatoms recovered from the lungs and other organs in drowning deaths in bathwater. Leg Med. 2011. https://doi.org/10.1016/j.legalmed.2011.04.002.

    Article  Google Scholar 

  5. Akhilender NK, Saini RK, Prasad P, Sreedhar RV, Shang X, Keum YS. Omega-3 polyunsaturated fatty acids (PUFAs): emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits-a review. Antioxidants (Basel). 2021. https://doi.org/10.3390/antiox10101627.

    Article  Google Scholar 

  6. Alves Martins D, Rocha F, Castanheira F, Mendes A, Pousão-Ferreira P, Bandarra N. Effects of dietary arachidonic acid on cortisol production and gene expression in stress response in Senegalese sole (Soleasenegalensis) post-larvae. Fish Physiol Biochem. 2013. https://doi.org/10.1007/s10695-013-9778-6.

    Article  Google Scholar 

  7. Alishah Aratboni H, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JR. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact. 2019. https://doi.org/10.1186/s12934-019-1228-4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Archana T, Melchor-Martínez EM, Saxena A, Kapoor N, Singh KJ, Saldarriaga-Hernández S, Iqbal HMN. Therapeutic attributes and applied aspects of biological macromolecules (polypeptides, fucoxanthin, sterols, fatty acids, polysaccharides, and polyphenols) from diatoms—a review. Int J Biol Macromol. 2021. https://doi.org/10.1016/j.ijbiomac.2020.12.219.

    Article  Google Scholar 

  9. Armenta RE, Valentine MC. Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. J Am Oil Chem Soc. 2013. https://doi.org/10.1051/ocl/2013030.

    Article  Google Scholar 

  10. Arti K, Sunil P, Aruna T. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Crit Rev Food Sci Nutr. 2023. https://doi.org/10.1080/10408398.2023.2226720.

    Article  Google Scholar 

  11. Himani Aryan, Abhishek Saxena, Archana Tiwari (2021) Correlation between bioactive lipids and novel coronavirus: constructive role of biolipids in curbing infectivity by enveloped viruses, centralizing on EPA and DHA. Syst Microbiol Biomanufacturing. https://doi.org/10.1007/s43393-020-00019-3

    Article  Google Scholar 

  12. Avallone R, Vitale G, Bertolotti M. Omega-3 fatty acids and neurodegenerative diseases: new evidence in clinical trials. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20174256.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aw MS, Simovic S, Addai-Mensah J, Losic D. Polymeric micelles in porous and nanotubular implants as a new system for extended delivery of poorly soluble drugs. J Mater Chem. 2011a. https://doi.org/10.1039/c0jm04307a.

    Article  Google Scholar 

  14. Aw MS, Simovic S, Addai-Mensah J, Losic D. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine. 2011b. https://doi.org/10.2217/nnm.11.29.

    Article  PubMed  Google Scholar 

  15. Axelsson M, Gentili F. A single-step method for rapid extraction of total lipids from green microalgae. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0089643.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bai X, Song H, Lavoie M, Zhu K, Su Y, Ye H, Chen S, Fu Z, Qian H. Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Sci Rep. 2016. https://doi.org/10.1038/srep25494.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baier T, Wichmann J, Kruse O, Lauersen KJ. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomona sreinhardtii. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky532.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate posttranscriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet. 2020. https://doi.org/10.1371/journal.pgen.1008944.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barta DG, Coman V, Vodnar DC. Microalgae as sources of omega-3 polyunsaturated fatty acids: biotechnological aspects. Algal Res. 2021. https://doi.org/10.1016/j.algal.2021.102410.

    Article  Google Scholar 

  20. Belayneh HD, Randy L, Wehling EC, Ozan NC. Extraction of omega3-rich oil from Camelina sativa seed using supercritical carbon dioxide. J Supercrit Fluids. 2015;104:153–9.

    Article  CAS  Google Scholar 

  21. Benedetti M, Vecchi V, Barera S, DallOsto L. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Fact. 2018;17:173.

    Article  CAS  Google Scholar 

  22. Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol. 2012. https://doi.org/10.1016/j.tree.2011.11.010.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bilbao PS, Salvador GA, Leonardi PI. Fatty acids from microalgae: targeting the accumulation of triacylglycerides. Fatty Acids. 2017. https://doi.org/10.5772/67482.

    Article  Google Scholar 

  24. Bligh E, Graham W, Justin D. A rapid method of total lipid extraction and purification. Can J Biochem. 1959;37(8):911–7.

    CAS  PubMed  Google Scholar 

  25. Boccia F, Gennaro P. Nutraceuticals: some remarks by a choice experiment on food, health, and new technologies. Int Food Res J. 2020;130: 108888.

    Article  Google Scholar 

  26. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.

    Article  CAS  PubMed  Google Scholar 

  27. Boyd CE (1990) Water quality in ponds for aquaculture. Auburn State AL alabama agricultural experiment station. p 5–7.

  28. Brocks J, Buick R, Logan GA, Summons RE. Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion year old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta. 2003. https://doi.org/10.1016/s0016-7037(03)00208-4.

    Article  Google Scholar 

  29. Buggé JA (2015) Electroporation-Mediated Transformation and Post-Transcriptional Gene Regulation of Nitrate Reductase in the Marine Diatom Thalassiosira pseudonana Worcester MA Clark University. Doi: https://doi.org/10.17504/protocols.io.yvqfw5w.

  30. Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V. Functional ingredients from microalgae. Food Funct. 2014. https://doi.org/10.1039/c4fo00125g.

    Article  PubMed  Google Scholar 

  31. CerónGarcía MC, García Camacho F, Sánchez Mirón A, FernándezSevilla JM, Chisti Y, Molina GE. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol. 2006;16:689–94.

    Google Scholar 

  32. Chairatana C, Powtongsook S, Piyatiratitivorakul S. Growth of a diatom Amphora Delicatissima in dark heterotrophic culture. Songklanakarin J Sc Technol. 2003;25:205–12.

    Google Scholar 

  33. Chauton MS, Reitan K, Norsker NH, Tveterås R, Kleivdal HT. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture. 2015. https://doi.org/10.1016/j.aquaculture.2014.10.

    Article  Google Scholar 

  34. Chen CY, Chen YC, Huang HC, Huang CC, Lee WL, Chang JS. Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2. Bioresour Technol. 2013. https://doi.org/10.1016/j.biortech.2013.08.051.

    Article  PubMed  Google Scholar 

  35. Chen J, Wei Y, Chen X, Jiao J, Zhang Y. Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis. Oncotarget. 2017;8(5):7301.

    Article  PubMed  Google Scholar 

  36. Chisti Y. Fuels from microalgae. Biofuels. 2010. https://doi.org/10.1016/j.biotechadv.2007.02.001.

    Article  Google Scholar 

  37. Cholewski M, Tomczykowa M, Tomczyk M. A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients. 2018. https://doi.org/10.3390/nu10111662.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cicero AFG, Alessandro C, von Stephan H, Dragos V, Agata BD, Amirhossein S, Peter PT. Nutraceutical support in heart failure: a position paper of the International Lipid Expert Panel (ILEP). Nutr Res Rev. 2020. https://doi.org/10.1017/S0954422420000049.

    Article  PubMed  Google Scholar 

  39. Cole GM, Ma QL, Frautschy SA. Omega-3 fatty acids and dementia. Prostaglandins Leukot. 2009. https://doi.org/10.1016/j.plefa.2009.05.015.

    Article  Google Scholar 

  40. de Courtois Viçose G, Porta A, Viera MP, Fernández-Palacios H, Izquierdo MS. Effects of density on growth rates of four benthic diatoms and variations in biochemical composition associated with growth phase. J Appl Phycol. 2012. https://doi.org/10.1007/s10811-012-9799-z.

    Article  Google Scholar 

  41. Cristóbal G, Blanco S, Bueno G. Modern trends in diatom identification: fundamentals and applications. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-39212-3.

    Book  Google Scholar 

  42. Yi C, Skye RTH, Peer MS. Phaeodactylum tricornutum microalgae as a rich source of omega-3 oil: progress in lipid induction techniques towards industry adoption. Food Chem. 2019;297:124937.

    Article  Google Scholar 

  43. Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA. Omega-3 long-chain polyunsaturated fatty acids, EPA, and DHA: bridging the gap between supply and demand. Nutrients. 2019. https://doi.org/10.3390/nu11010089.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Daniel GB, Vasile C, Dan CV. Microalgae as sources of omega-3 polyunsaturated fatty acids: biotechnological aspects. Algal Res. 2021. https://doi.org/10.1016/j.algal.2021.102410.

    Article  Google Scholar 

  45. Dick B. Omega-3s for better health. J Altern. 2015;20:54.

    Google Scholar 

  46. Dorni C, Paras S, Gunendra S, Longvah L. Fatty acid profile of edible oils and fats consumed in India. Food chem. 2018;238:9–15.

    Article  CAS  PubMed  Google Scholar 

  47. Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA DPA and DHA. Front Aging Neurosci. 2015. https://doi.org/10.3389/fnagi.2015.00052.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ebm N, Guo F, Brett MT, Bunn SE, Kainz MJ. Polyunsaturated fatty acids in fish tissues more closely resemble algal than terrestrial diet sources. Hydrobiologia. 2021;848(2):371–83.

    Article  PubMed  Google Scholar 

  49. Li X, Liu J, Chen G, Zhang J, Wang C, Liu B. Extraction and purification of eicosapentaenoic acid and docosahexaenoic acid from microalgae: a critical review. Algal Res. 2019. https://doi.org/10.1016/j.algal.2019.101619.

    Article  Google Scholar 

  50. Figueiredo Ana RP, da Elisabete C, Joana SM. The effects of different extraction methods of lipids from Nannochloropsis oceanica on the contents of omega-3 fatty acids. Algal Res. 2019;41: 101556.

    Article  Google Scholar 

  51. Gamoh S, Hashimoto M, Sugioka K, Shahdat Hossain M, Hata N, Misawa Y, Masumura S. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience. 1999. https://doi.org/10.1016/s0306-4522(99)00107-4.

    Article  PubMed  Google Scholar 

  52. Ghasemifard S, Turchini GM, Sinclair AJ. Omega-3 long chain fatty acid bioavailability: a review of evidence and methodological consideration. Prog Lipid Res. 2014. https://doi.org/10.1016/j.plipres.2014.09.001.

    Article  PubMed  Google Scholar 

  53. Gil-Iturbe E, Félix-Soriano E, Sáinz N, Idoate-Bayón A, Castilla-Madrigal R, Moreno-Aliaga MJ, Lostao MP. Effect of aging and obesity on GLUT12 expression in small intestine, adipose tissue, muscle, and kidney and its regulation by docosahexaenoic acid and exercise in mice. Appl Physiol Nutr Metab. 2021. https://doi.org/10.1139/apnm-2019-0721.

    Article  PubMed  Google Scholar 

  54. González-Sarrías A, Larrosa M, García-Conesa MT, Tomás-Barberán FA, Espín JC. Nutraceuticals for older people: facts, fictions, and gaps in knowledge. Maturitas. 2013. https://doi.org/10.1016/j.maturitas.2013.05.006.

    Article  PubMed  Google Scholar 

  55. Govindan N, Maniam GP, Yusoff MM, Rahim MHA, Chatsungnoen T, Ramaraj R, Chisti Y. Statistical optimization of lipid production by the diatom Gyrosigma sp. grown in industrial wastewater. J Appl Phycol. 2020. https://doi.org/10.1007/s10811-019-01971-x.

    Article  Google Scholar 

  56. Govindan N, Maniam GP, Ab Rahim MH, Sulaiman AZ, Ajit A, Chatsungnoen T, Chisti Y. Production of renewable lipids by the diatom Amphora copulata. Fermentation. 2021. https://doi.org/10.3390/fermentation7010037.

    Article  Google Scholar 

  57. Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol. 2014. https://doi.org/10.1007/s13197-013-1247-9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gray RJH. Application for the authorization of DHA and EPA-rich algal oil from Schizochytrium sp. Columbia: Martek Biosciences Corporation; 2017.

    Google Scholar 

  59. Hamilton ML, Haslam RP, Napier JA, Sayanova O. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng. 2014;22:3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hamilton ML, Warwick J, Terry A, Allen MJ, Napier JA, Sayanova O. Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0144054.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hamilton ML, Stephen P, Johnathan AN, Olga S. Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs. 2016;14(3):53.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Han SC, Koo DH, Kang NJ, Yoon WJ, Kang GJ, Kang HK, Yoo ES. Docosahexaenoic acid alleviates atopic dermatitis by generating Tregs and IL-10/TGF-βmodified macrophages via a TGF-β-dependent mechanism. J Invest Dermatol. 2015;135(6):1556–64.

    Article  CAS  PubMed  Google Scholar 

  63. Huang TY, Lu WC, Chu IM. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22: 6 proportions in total fatty acid. Bioresour Technol. 2012. https://doi.org/10.1016/j.biortech.2012.07.068.

    Article  PubMed  Google Scholar 

  64. Hutchings JA, John DR. Marine fish population collapses: consequences for recovery and extinction risk. Bioscience. 2004;54(4):297–309.

    Article  Google Scholar 

  65. Wang JK, Seibert M. Prospects for commercial production of diatoms. Biotechnol Biofuels. 2017. https://doi.org/10.1186/s13068-017-0699-y.

    Article  PubMed  PubMed Central  Google Scholar 

  66. James S, Montgomery P, Wheeler DM, Williams KJ. Omega-3 fatty acids for autistic spectrum disorder. Cochrane Database Syst Rev. 2009. https://doi.org/10.1002/14651858.cd007992.

    Article  PubMed  Google Scholar 

  67. Jimenez-Lopez C, Pereira AG, Lourenço-Lopes C, Garcia-Oliveira P, Cassani L, Fraga-Corral M, Prieto MA, Simal-Gandara J. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food chem. 2021;34: 128262.

    Article  Google Scholar 

  68. Koskela A, Mika R, Goran P, Debasish S, Céline O, Reijo K, Kai K. Nutraceutical with resveratrol and omega-3 fatty acids induces autophagy in ARPE-19 cells. Nutrients. 2016;8(5):284.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kumari A, Pabbi S, Tyagi A. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Cri Rev Food Sci Nutria. 2023. https://doi.org/10.1080/10408398.2023.2226720.

    Article  Google Scholar 

  70. Lachnit M, Buhmann MT, Klemm J, Kröger N, Poulsen N. Identification of proteins in the adhesive trails of the diatom Amphora coffeaeformis. Philos Trans Roy Soc B: Proc Biol Sci. 2019. https://doi.org/10.1098/RSTB.2019.0196.

    Article  Google Scholar 

  71. Lee JH, O’Keefe JH, Lavie CJ, Harris WS. Omega-3 fatty acids: cardiovascular benefits, sources, and sustainability. Nat Rev Cardiol. 2009;6(12):753–8.

    Article  CAS  PubMed  Google Scholar 

  72. Leterme SC. The oil production capacity of diatoms. Ann Aquacult Res. 2015;561:167–77.

    Google Scholar 

  73. Levitan O, Dinamarca J, Hochman G, Falkowski PG. Diatoms: a fossil fuel of the future. Trends Biotechnol. 2014;32:117–24.

    Article  CAS  PubMed  Google Scholar 

  74. Linder M, Fanni J, Parmentier M. Proteolytic extraction of salmon oil and PUFA concentration by lipases. Mar Biotechnol. 2005. https://doi.org/10.1007/s10126-004-0149-2.

    Article  Google Scholar 

  75. da Lopes S, Teresa Patrícia M, Carla S, Alberto R. The dark side of microalgae biotechnology: a heterotrophic biorefinery platform directed to ω-3 rich lipid production. Microorganisms. 2019. https://doi.org/10.3390/microorganisms7120670.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs. 2011;9(6):1056–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lucy towers (n.d.). A Single Diatom Accumulates EPA and DHA High Value Omega-3. The Fish Site. 2014.

  78. Mishra M, Arukha AP, Bashir T, Yadav D, Prasad GBKS. All new faces of diatoms: potential source of nanomaterials and beyond. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.01239.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mishra B, Tiwari A. Cultivation of Anabena variabilis, Synechococcus elongatus, Spirulina platensis for the production of C-Phycocyanin, C-Phycoerythrin and Thalassiosira, Skeletonema, Chaetoceros for fucoxanthin. Syst Microbiol and Biomanuf. 2021. https://doi.org/10.1007/s43393-020-00020-w.

    Article  Google Scholar 

  80. Marella TK, López-Pacheco IY, Parra-Saldívar R, Dixit S, Tiwari A. Wealth from waste: diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci Tot Envi. 2020. https://doi.org/10.1016/j.scitotenv.2020.137.

    Article  Google Scholar 

  81. Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA. 2006;296(15):1885–99.

    Article  CAS  PubMed  Google Scholar 

  82. Naczk M, Shahidi F. Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal. 2006;41(5):1523–42.

    Article  CAS  PubMed  Google Scholar 

  83. Nazir S, Wani IA. Physicochemical characterization of basil (Ocimum basilicum L.) seeds. J Appl Res Med Aromat Plants. 2021;22:100295.

    CAS  Google Scholar 

  84. Obata T, Fernie A, Nunes-Nesi A. The central carbon and energy metabolism of marine diatoms. Metabolites. 2013. https://doi.org/10.3390/metabo3020325.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Obeid S, Beaufils N, Camy S, Takache H, Ismail A, Pontalier PY. Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. Algal Res. 2018;34:49–56.

    Article  Google Scholar 

  86. Oliver L, Thomas D, Izaskun M, Maria CV, Ramón JB. Producing omega-3 polyunsaturated fatty acids: a review of sustainable sources and future trends for the EPA and DHA market. Resources. 2020;9:12–48.

    Article  Google Scholar 

  87. Palanisamy KM, Paramasivam P, Maniam GP, Rahim MHA, Govindan N, Chisti Y. Production of lipids by Chaetoceros affinis in media based on palm oil mill effluent. J Biotechnol. 2021;327:86–96.

    Article  CAS  PubMed  Google Scholar 

  88. Patel A, Karageorgou D, Katapodis P, Sharma A, Rova U, Christakopoulos P, Matsakas L. Bioprospecting of Thraustochytrids for omega-3 fatty acids: a sustainable approach to reduce dependency on animal sources. Trends Food Sci Technol. 2021;115:433–44.

    Article  CAS  Google Scholar 

  89. Popovich CA, Faraoni MB, Sequeira A, Daglio Y, Martín LA, Martínez AM, Leonardi PI. Potential of the marine diatom Halamphora coffeaeformisto simultaneously produce omega-3 fatty acids, chrysolaminarin and fucoxanthin in a raceway pond. Algal Res. 2020. https://doi.org/10.1016/j.algal.2020.102030.

    Article  Google Scholar 

  90. Lu Q, Li H, Xiao Y, Liu H. A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from Microalgae. Alga Res. 2021. https://doi.org/10.1016/j.algal.2021.102281.

    Article  Google Scholar 

  91. Ranjith RK, Hanumantha PR, Arumugam M. Lipid extraction methods from microalgae: a comprehensive review. Front Energ Res. 2015. https://doi.org/10.3389/fenrg.2014.00061.

    Article  Google Scholar 

  92. Remize M, Planchon F, Loh AN, Grand FL, Bideau A, Goic NL, Fleury E, Miner P, Corvaisier R, Volety A, Soudant P. Study of synthesis pathways of the essential polyunsaturated fatty acid 20:5n–3 in the diatom chaetoceros muelleri using 13C-isotope labeling. Biomolecules. 2020. https://doi.org/10.3390/biom10050797.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Russo GL, Langellotti AL, Oliviero M, Sacchi R, Masi P. Sustainable production of food grade omega-3 oil using aquatic protists: reliability and future horizons. N Biotechnol. 2021;62:32–9.

    Article  CAS  PubMed  Google Scholar 

  94. Ryckebosch E, Koenraad M, Imogen F. Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc. 2012;89(2):189–98.

    Article  CAS  Google Scholar 

  95. Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem. 2014. https://doi.org/10.1016/j.foodchem.2014.03.087.

    Article  PubMed  Google Scholar 

  96. Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs. 2013. https://doi.org/10.3390/md11072667.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Xia S, Gao B, Li A, Xiong J, Ao Z, Zhang C. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar Drugs. 2014. https://doi.org/10.3390/md12094883.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Saini RK, Prasad P, Sreedhar RV, Akhilender NK, Shang X, Keum YS. Omega-3 polyunsaturated fatty acids (PUFAs): emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits-a review. Antioxidants. 2021. https://doi.org/10.3390/antiox10101627.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Santoro I, Monica N, Cinzia B, Paola C, Girolamo Antonio P, Giovanni S. Sustainable and selective extraction of lipids and bioactive compounds from microalgae. Molecules. 2019;24(23):4347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Saxena P, Kumar G. Role of omega 3 fatty acids as adjuvant treatment in schizophrenia: a randomized controlled trial. Indian J Psychiatry. 2022. https://doi.org/10.4103/0019-5545.341699.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sathivel S, Witoon P, Joan MK, Casey CG, Steven L. Oil production from catfish viscera. JAOCS. 2003;80(4):377–82.

    Article  CAS  Google Scholar 

  102. Sharma A, Jennifer B, Joseph E, Gustavo R, Vernon TC, Jean AH. Effects of omega-3 fatty acids on components of the transforming growth factor beta-1 pathway: implication for dietary modification and prevention in ovarian cancer. Am J Obstet Gynecol. 2009;200(5):516-e1.

    Article  Google Scholar 

  103. Simon AL, Cras E, Foulo RL. Diversity and evolution of marine phytoplankton. Comptes Rendus Biol. 2009. https://doi.org/10.1016/j.crvi.2008.09.009.

    Article  Google Scholar 

  104. Sprynskyy M, Monedeiro F, Maciej MM, Nowak Z, Sieprawska A, Pawel PP. Isolation of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid EPA and docosahexaenoic acid DHA) from diatom biomass using different extraction methods. Alga Res. 2022. https://doi.org/10.1016/j.algal.2021.102615.

    Article  Google Scholar 

  105. Swanson D, Robert B, Shaker AM. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutri. 2012. https://doi.org/10.3945/an.111.000893.

    Article  Google Scholar 

  106. Taneja A, Harjinder S. Challenges for the delivery of long-chain n-3 fatty acids in functional foods. Annu Rev Food Sci Technol. 2012;3:105–23.

    Article  CAS  PubMed  Google Scholar 

  107. Terracciano A, Stephan Y, Sutin AR. Omega-3 fatty acid: a promising pathway linking personality and health. J Psychosom Res. 2018. https://doi.org/10.1016/j.jpsychores.2018.05.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Thomas K, Markus L, Oliver Z. Production of omega-3 fatty acids in microflora of thraustochytriales using modified media. United States patent appl Publ. 2007. 12/446, 776.

  109. Thomas J, Thomas CJ, Radcliffe J, Itsiopoulos C. Omega-3 fatty acids in early prevention of inflammatory neurodegenerative disease: a focus on alzheimer’s disease. Biomed Res Int. 2015. https://doi.org/10.1155/2015/172801.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tiwari A, Melchor-Martínez EM, Saxena A, Kapoor N, Singh KJ, Saldarriaga-Hernández S, Parra-Saldívar R, Iqbal HMN (2021) Therapeutic attributes and applied aspects of biological macromolecules (polypeptides, fucoxanthin, sterols, fatty acids, polysaccharides, and polyphenols) from diatoms—a review. Int J Biol Macromol 171:398–413. https://doi.org/10.1016/j.ijbiomac.2020.12.219.

  111. Viguera MA, Marti F, Masca C, Prieto LC. The process parameters and solid conditions that affect the supercritical CO2 extraction of the lipids produced by microalgae. J Supercrit Fluids. 2016. https://doi.org/10.3390/molecules23081854.

    Article  Google Scholar 

  112. Vollmann J, Christina E. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering. Biotechnol J. 2015. https://doi.org/10.1002/biot.201400200.

    Article  PubMed  Google Scholar 

  113. Zhang W, Wang F, Gao B, Huang L, Zhang C. An integrated biorefinery process: stepwise extraction of fucoxanthin, eicosapentaenoic acid and Chrysolaminarin from the same Phaeodactylum tricornutum biomass. Algal Res. 2018. https://doi.org/10.1016/j.algal.2018.04.002.

    Article  Google Scholar 

  114. White AW. Growth of two facultatively heterotrophic marine centric diatoms. J Phycol. 2003;10:292–300.

    Article  Google Scholar 

  115. Williams NC. Comparable reductions in hyperpnoea-induced bronchoconstriction and markers of airway inflammation after supplementation with 6 2 and 3·1 g/d of long-chain n-3 PUFA in adults with asthma. Br J Nutr. 2017;117(10):1379–89.

    Article  CAS  PubMed  Google Scholar 

  116. Yang ZK, Niu YF, Ma YH, et al. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels. 2013. https://doi.org/10.1186/1754-6834-6-67.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yi Z, Xu M, Brynjolfsson DXS, Fu W. Exploring valuable lipids in diatoms. Front Mar Sci. 2017. https://doi.org/10.3389/FMARS.2017.00017.

    Article  Google Scholar 

  118. Zhou J, Wang M, Saraiva JA, Martins AP, Pinto CA, Prieto MA, Simal-Gandara J, Cao H, Xiao J, Barba FJ. Extraction of lipids from microalgae using classical and innovative approaches. Food Chem. 2022. https://doi.org/10.1016/j.foodchem.2022.132236.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University for required infrastructure support.

Funding

No funding was received for the work.

Author information

Authors and Affiliations

Authors

Contributions

RT: writing original draft and data curation; RPR: data curation and reviewing; OB: visualization and reviewing; MKA: visualization and reviewing; AT: reviewing, conceptualization, and supervision.

Corresponding author

Correspondence to Archana Tiwari.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Ethical approval and consent to participate

No ethical approval is required for the study and all authors give their consent to participate.

Consent for publication

All authors give their consent for publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, R., Rastogi, R.P., Babich, O. et al. New perspectives of omega-3 fatty acids from diatoms. Syst Microbiol and Biomanuf 4, 528–541 (2024). https://doi.org/10.1007/s43393-023-00202-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00202-2

Keywords

Navigation