Skip to main content

Advertisement

Log in

Pathogenicity of Vibrio harveyi and its biocontrol using bacteriophages

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Vibrio harveyi is a Gram-negative, rod-shaped, polar flagellate, facultatively anaerobic, halophilic, bioluminescent marine bacteria that belongs to the family of Vibrionaceae, class, Gammaproteobacteria. This pathogenic organism is responsible for various diseases of vertebrates and invertebrates in marine habitats, including shrimp aquaculture. Various symptoms like lesions, gastroenteritis, skin ulcers, eye lesions, and tail rot have been observed due to V. harveyi infection. The pathogenicity mechanism of V. harveyi involves endotoxin lipopolysaccharide, extracellular proteases, and bacteriophage interaction. Hemolysin genes encoded extracellular hemolysin-like phospholipase B toxin could inactivate fish species via the caspase inactivation pathway, ultimately leading to apoptosis. In addition, VBNC (viable but nonculturable) cells are another basis of vibriosis outbreaks in the shrimp aquaculture sector. The extensive amount of antibiotic use promotes the generation of multidrug-resistant strains. Therefore, as an alternative strategy to combat V. harveyi infection, bacteriophages are utilized as a biocontrol agent. However, there is a lack of research on the immobilization and development of encapsulation strategies of V. harveyi-infecting bacteriophages which need to be studied further. In conclusion, the pathogenicity of V. harveyi and its biocontrol by bacteriophages has been documented in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Atujona D, Cai S, Amenyogbe E. Mini review on Vibrio Infection-a case study on Vibrio harveyi clade. Fish Aquac J. 2018;9(4):1A-A.

    Article  Google Scholar 

  2. Zhang X-H, He X, Austin B. Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture. Mar Life sci Technol. 2020;2(3):231–45.

    Article  PubMed  Google Scholar 

  3. Harris L, Owens L. Production of exotoxins by two luminous Vibrio harveyi strains known to be primary pathogens of Penaeus monodon larvae. Dis Aquat Org. 1999;38(1):11–22.

    Article  CAS  Google Scholar 

  4. Ruangpan L, Danayadol Y, Direkbusarakom S, Siurairatana S, Flegel T. Lethal toxicity of Vibrio harveyi to cultivated Penaeus monodon induced by a bacteriophage. Dis Aquat Org. 1999;35(3):195–201.

    Article  Google Scholar 

  5. Oakey H, Owens L. A new bacteriophage, VHML, isolated from a toxin-producing strain of Vibrio harveyi in tropical Australia. J Appl Microbiol. 2000;89(4):702–9.

    Article  CAS  PubMed  Google Scholar 

  6. Benala M, Vaiyapuri M, Sivam V, Raveendran K, Mothadaka MP, Badireddy MR. Genome characterization and infectivity potential of vibriophage-ϕLV6 with lytic activity against luminescent Vibrios of Penaeus vannamei shrimp aquaculture. Viruses. 2023;15(4):868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Austin B, Zhang XH. Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol. 2006;43(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  8. Elias NA, Abu Hassan MS, Yusoff NAH, Tosin OV, Harun NA, Rahmah S, et al. Potential and limitation of biocontrol methods against vibriosis: a review. Aquac Int. 2023. https://doi.org/10.1007/s10499-023-01091-x.

    Article  Google Scholar 

  9. Moriarty D. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture. 1998;164(1–4):351–8.

    Article  Google Scholar 

  10. Cano-Gomez A, Bourne DG, Hall MR, Owens L, Høj L. Molecular identification, typing and tracking of Vibrio harveyi in aquaculture systems: current methods and future prospects. Aquaculture. 2009;287(1–2):1–10.

    Article  CAS  Google Scholar 

  11. Frans I, Michiels CW, Bossier P, Willems K, Lievens B, Rediers H. Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis. 2011;34(9):643–61.

    Article  CAS  PubMed  Google Scholar 

  12. Sunaryanto A, Mariam A. Occurrence of a pathogenic bacteria causing luminescence in penaeid larvae in Indonesian hatcheries. Bull Brackishwater Aquac Dev Cent. 1986;8:64–70.

    Google Scholar 

  13. Yanuhar U, Nurcahyo H, Widiyanti L, Junirahma NS, Caesar NR, Sukoso S. In vivo test of Vibrio alginolyticus and Vibrio harveyi infection in the humpback grouper (Cromileptes altivelis) from East Java Indonesia. Vet World. 2022;15(5):1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lavilla-Pitogo CR, Baticados MCL, Cruz-Lacierda ER, Leobert D. Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture. 1990;91(1–2):1–13.

    Article  Google Scholar 

  15. De Mesa CA, Mendoza RM, Penir SMU, Dela Pena LD, Amar EC, Saloma CP. Genomic analysis of Vibrio harveyi strain PH1009, a potential multi-drug resistant pathogen due to acquisition of toxin genes. Heliyon. 2023.

  16. Karunasagar I, Pai R, Malathi G, Karunasagar I. Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture. 1994;128(3–4):203–9.

    Article  Google Scholar 

  17. Jiravanichpaisal P, Miyazaki T, Limsuwan C. Histopathology, biochemistry, and pathogenicity of Vibrio harveyi infecting black tiger prawn Penaeus monodon. J Aquat Anim Health. 1994;6(1):27–35.

    Article  Google Scholar 

  18. Guzman JPMD, Yatip P, Soowannayan C, Maningas MBB. Piper betle L. leaf extracts inhibit quorum sensing of shrimp pathogen Vibrio harveyi and protect Penaeus vannamei postlarvae against bacterial infection. Aquaculture. 2022;547:737452.

    Article  CAS  Google Scholar 

  19. Pizzutto M, Hirst RG. Classification of isolates of Vibrio harveyi virulent to Penaeus monodon larvae by protein profile analysis and M13 DNA fingerprinting. Dis Aquat Org. 1995;21(1):61–8.

    Article  Google Scholar 

  20. Samsing F, Zhang W, Zadoks RN, Whittington R, Venturini C, Giles C, et al. Cold temperature stress and damaged skin induced high mortality in barramundi (Lates calcarifer) challenged with Vibrio harveyi. J Fish Dis. 2023. https://doi.org/10.1111/jfd.13784.

    Article  PubMed  Google Scholar 

  21. Liuxy PC, Lee KK, Chen SN. Pathogenicity of different isolates of Vibrio harveyi in tiger prawn, Penaeus monodon. Lett Appl Microbiol. 1996;22(6):413–6.

    Article  Google Scholar 

  22. Giovanni A, Maekawa S, Wang P-C, Chen S-C. Recombinant Vibrio harveyi flagellin a protein and partial deletions of middle variable region and D0 domain induce immune related genes in Epinephelus coioides and Cyprinus carpio. Dev Comp Immunol. 2023;139: 104588.

    Article  CAS  PubMed  Google Scholar 

  23. Defoirdt T, Sorgeloos P, Bossier P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol. 2011;14(3):251–8.

    Article  PubMed  Google Scholar 

  24. Carlton RM. Phage therapy: past history and future prospects. Arch Immunol Ther Exp. 1999;47:267–74.

    CAS  Google Scholar 

  25. Imbeault S, Parent S, Lagacé M, Uhland CF, Blais J-F. Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout. J Aquat Anim Health. 2006;18(3):203–14.

    Article  Google Scholar 

  26. Mathur M, Vidhani S, Mehndiratta P, Bhalla P, Reddy B. Bacteriophage therapy: an alternative to conventional antibiotics. J Assoc Physicians India. 2003;51:593–6.

    CAS  PubMed  Google Scholar 

  27. Łobocka M, Dąbrowska K, Górski A. Engineered bacteriophage therapeutics: rationale, challenges and future. BioDrugs. 2021;35(3):255–80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Twort FW. An investigation on the nature of ultra-microscopic viruses. Acta Kravsi. 1961.

  29. d’Herelle F. On an invisible microbe antagonistic to dysentery bacilli. CR Acad Sci Paris. 1917;165:373–5.

    Google Scholar 

  30. Surekhamol I, Deepa G, Somnath Pai S, Sreelakshmi B, Varghese S, Bright SI. Isolation and characterization of broad spectrum bacteriophages lytic to Vibrio harveyi from shrimp farms of Kerala. India Lett Appl Microbiol. 2014;58(3):197–204.

    Article  CAS  PubMed  Google Scholar 

  31. Wall SK, Zhang J, Rostagno MH, Ebner PD. Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microbiol. 2010;76(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  32. Atterbury RJ, Van Bergen M, Ortiz F, Lovell M, Harris J, De Boer A, et al. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol. 2007;73(14):4543–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huff W, Huff G, Rath N, Balog J, Donoghue A. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult Sci. 2005;84(4):655–9.

    Article  CAS  PubMed  Google Scholar 

  34. Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, et al. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Prot. 2001;64(8):1116–21.

    Article  CAS  PubMed  Google Scholar 

  35. Bruttin A, Brüssow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother. 2005;49(7):2874–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, et al. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int J Mol Med. 2006;17(2):309–17.

    PubMed  Google Scholar 

  37. Kumari S, Harjai K, Chhibber S. Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae. J Microbiol Biotechnol. 2009;19(6):622–8.

    CAS  PubMed  Google Scholar 

  38. Santos T, Gilbert R, Caixeta L, Machado V, Teixeira L, Bicalho R. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part II: in vitro antimicrobial activity evaluation of a bacteriophage cocktail and several antibiotics. J Dairy Sci. 2010;93(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  39. Sundar MM, Nagananda G, Das A, Bhattacharya S, Suryan S. Isolation of host-specific bacteriophages from sewage against human pathogens. Asian J Biotechnol. 2009;1(4):163–70.

    Article  Google Scholar 

  40. Abdulla H, Khafagi I, El-Kareem M, Dewedar A. Bacteriophages in engineered wetland for domestic wastewater treatment. Res J Microbiol. 2007;2(12):889–99.

    Article  Google Scholar 

  41. Pasharawipas T, Thaikua S, Sriurairatana S, Ruangpan L, Direkbusarakum S, Manopvisetcharean J, et al. Partial characterization of a novel bacteriophage of Vibrio harveyi isolated from shrimp culture ponds in Thailand. Virus Res. 2005;114(1–2):63–9.

    Article  CAS  PubMed  Google Scholar 

  42. Shivu MM, Rajeeva BC, Girisha SK, Karunasagar I, Krohne G, Karunasagar I. Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environments along the coast of India. Environ Microbiol. 2007;9(2):322–31.

    Article  CAS  PubMed  Google Scholar 

  43. Kar P, Das TK, Ghosh S, Pradhan S, Chakrabarti S, Mondal KC, et al. Characterization of a Vibrio-infecting bacteriophage, VPMCC5, and proposal of its incorporation as a new genus in the Zobellviridae family. Virus Res. 2022;321: 198904.

    Article  CAS  PubMed  Google Scholar 

  44. Prayitno SB, Latchford J. Experimental infections of crustaceans with luminous bacteria related to Photobacterium and Vibrio. Effect of salinity and pH on infectiosity. Aquaculture. 1995;132(1–2):105–12.

    Article  Google Scholar 

  45. Robertson P, Calderon J, Carrera L, Stark J, Zherdmant M, Austin B. Experimental Vibrio harveyi infections in Penaeus vannamei larvae. Dis Aquat Org. 1998;32(2):151–5.

    Article  Google Scholar 

  46. Nishimori E, Hasegawa O, Numata T, Wakabayashi H. Vibrio carchariae causes mass mortalities in Japanese abalone. Sulculus diversicolor supratexta Fish pathol. 1998;33(5):495–502.

    Article  CAS  Google Scholar 

  47. Becker P, Gillan D, Lanterbecq D, Jangoux M, Rasolofonirina R, Rakotovao J, et al. The skin ulceration disease in cultivated juveniles of Holothuria scabra (Holothuroidea, Echinodermata). Aquaculture. 2004;242(1–4):13–30.

    Article  Google Scholar 

  48. Bertone S, Gili C, Moizo A, Calegari L. Vibrio carchariae associated with a chronic skin ulcer on a shark, Carcharhinus plumbeus (Nardo). J Fish Dis. 1996;19(6):429–34.

    Article  Google Scholar 

  49. Hashem M, El-Barbary M. Vibrio harveyi infection in Arabian surgeon fish (Acanthurus sohal) of Red sea at Hurghada, Egypt. Egypt J Aquat Res. 2013;39(3):199–203.

    Article  Google Scholar 

  50. Joseph S, Huxley A, Lipton A. Pathogenicity, antibiogram and biochemical characteristics of luminescent Vibrio harveyi, associated with’black shell disease’of Penaeus monodon. Fish Technol. 2005;42(2):191–6.

    Google Scholar 

  51. Raj ST, Lipton A, Chauhan G. Characterization and infectivity evaluation of Vibrio harveyi causing white patch disease among captive reared seahorses, Hippocampus kuda. 2010.

  52. Zhou J, Fang W, Yang X, Zhou S, Hu L, Li X, et al. A nonluminescent and highly virulent Vibrio harveyi strain is associated with “bacterial white tail disease” of Litopenaeus vannamei shrimp. PLoS ONE. 2012;7(2): e29961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muthukrishnan S, Defoirdt T, Ina-Salwany M, Yusoff FM, Shariff M, Ismail SI, et al. Vibrio parahaemolyticus and Vibrio harveyi causing Acute Hepatopancreatic Necrosis Disease (AHPND) in Penaeus vannamei (Boone, 1931) isolated from Malaysian shrimp ponds. Aquaculture. 2019;511: 734227.

    Article  Google Scholar 

  54. Grimes DJ, Stemmler J, Hada H, May E, Maneval D, Hetrick F, et al. Vibrio species associated with mortality of sharks held in captivity. Microb Ecol. 1984;10(3):271–82.

    Article  CAS  PubMed  Google Scholar 

  55. Colwell R, Grimes D. Vibrio diseases of marine fish populations. Helgoländer Meeresuntersuchungen. 1984;37(1):265–87.

    Article  Google Scholar 

  56. Kraxberger-Beatty T, McGarey D, Grier H, Lim D. Vibrio harveyi, an opportunistic pathogen of common snook, Centropomus undecimalis (Bloch), held in captivity. J Fish Dis. 1990;13(6):557–60.

    Article  Google Scholar 

  57. Ishimaru K, Muroga K. Taxonomical re-examination of two pathogenic Vibrio species isolated from milkfish and swimming crab. Fish Pathol. 1997;32(1):59–64.

    Article  Google Scholar 

  58. Hispano C, Nebra Y, Blanch AR. Isolation of Vibrio harveyi from an ocular lesion in the short sunfish (Mola mola). Bull Eur Assoc Fish Pathol. 1997;17:104–7.

    Google Scholar 

  59. Lee K, Liu P-C, Chuang W. Pathogenesis of gastroenteritis caused by Vibrio carchariae in cultured marine fish. Mar Biotechnol. 2002;4(3):267–77.

    Article  CAS  Google Scholar 

  60. Soffientino B, Gwaltney T, Nelson DR, Specker JL, Mauel M, Gómez-Chiarri M. Infectious necrotizing enteritis and mortality caused by Vibrio carchariae in summer flounder Paralichthys dentatus during intensive culture. Dis Aquat Org. 1999;38(3):201–10.

    Article  CAS  Google Scholar 

  61. Gauger E, Smolowitz R, Uhlinger K, Casey J, Gómez-Chiarri M. Vibrio harveyi and other bacterial pathogens in cultured summer flounder. Paralichthys dentatus Aquac. 2006;260(1–4):10–20.

    Article  CAS  Google Scholar 

  62. Yang Q, Xiao G, Chen R, Huang X, Teng S. Immune responses of hemocytes in the blood clam Tegillarca granosa in response to in vivo Vibrio harveyi infection. Fish Shellfish Immunol. 2023;132: 108447.

    Article  CAS  PubMed  Google Scholar 

  63. Saeed M. Association of Vibrio harveyi with mortalities in cultured marine fish in Kuwait. Aquaculture. 1995;136(1–2):21–9.

    Article  Google Scholar 

  64. Zhang XH, Austin B. Pathogenicity of Vibrio harveyi to salmonids. J fish Dis. 2000;23(2):93–102.

    Article  Google Scholar 

  65. Won KM, Park SI. Pathogenicity of Vibrio harveyi to cultured marine fishes in Korea. Aquaculture. 2008;285(1–4):8–13.

    Article  Google Scholar 

  66. Angthong P, Uengwetwanit T, Uawisetwathana U, Koehorst JJ, Arayamethakorn S, Schaap PJ, et al. Investigating host-gut microbial relationship in Penaeus monodon upon exposure to Vibrio harveyi. Aquaculture. 2023;567:739252.

    Article  CAS  Google Scholar 

  67. Henke JM, Bassler BL. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol. 2004;186(12):3794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Montánchez I, Kaberdin VR. Vibrio harveyi: A brief survey of general characteristics and recent epidemiological traits associated with climate change. Mar Environ Res. 2020;154: 104850.

    Article  PubMed  Google Scholar 

  69. Prasad S, Morris PC, Hansen R, Meaden PG, Austin B. A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi. Microbiology. 2005;151(9):3051–8.

    Article  CAS  PubMed  Google Scholar 

  70. Eickhoff MJ, Bassler BL. Vibrio fischeri siderophore production drives competitive exclusion during dual-species growth. Mol Microbiol. 2020;114(2):244–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Joshi F, Archana G, Desai A. Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe 3+ on growth stimulation under iron-limited conditions. Curr Microbiol. 2006;53:141–7.

    Article  CAS  PubMed  Google Scholar 

  72. Owens L, Austin DA, Austin B. Effect of strain origin on siderophore production in Vibrio harveyi isolates. Dis Aquat Org. 1996;27(2):157–60.

    Article  Google Scholar 

  73. McRose DL, Baars O, Seyedsayamdost MR, Morel FM. Quorum sensing and iron regulate a two-for-one siderophore gene cluster in Vibrio harveyi. Proc Natl Acad Sci. 2018;115(29):7581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang X-H. Studies on the pathogenicity mechanisms of the fish pathogen: Heriot-Watt University; 2001.

  75. Nakayama T, Nomura N, Matsumura M. Analysis of the relationship between luminescence and toxicity of Vibrio carchariae pathogenic to shrimp. Fish Sci. 2005;71(6):1236–42.

    Article  CAS  Google Scholar 

  76. Yang Q, Han Y, Zhang XH. Detection of quorum sensing signal molecules in the family Vibrionaceae. J Appl Microbiol. 2011;110(6):1438–48.

    Article  CAS  PubMed  Google Scholar 

  77. Defoirdt T, Sorgeloos P. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae. ISME J. 2012;6(12):2314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mok KC, Wingreen NS, Bassler BL. Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J. 2003;22(4):870–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Manefield M, Harris L, Rice SA, de Nys R, Kjelleberg S. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol. 2000;66(5):2079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Defoirdt T, Darshanee Ruwandeepika H, Karunasagar I, Boon N, Bossier P. Quorum sensing negatively regulates chitinase in Vibrio harveyi. Environ Microbiol Rep. 2010;2(1):44–9.

    Article  PubMed  Google Scholar 

  81. Natrah F, Ruwandeepika HD, Pawar S, Karunasagar I, Sorgeloos P, Bossier P, et al. Regulation of virulence factors by quorum sensing in Vibrio harveyi. Vet Microbiol. 2011;154(1–2):124–9.

    Article  CAS  PubMed  Google Scholar 

  82. Lilley BN, Bassler BL. Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol Microbiol. 2000;36(4):940–54.

    Article  CAS  PubMed  Google Scholar 

  83. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7(2):277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 2013;37(6):849–71.

    Article  CAS  PubMed  Google Scholar 

  85. Aguilar C, Vlamakis H, Guzman A, Losick R, Kolter R. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms. MBio. 2010;1(1):e00035-e110.

    Article  PubMed  PubMed Central  Google Scholar 

  86. De Silva L, Heo G-J. Biofilm formation of pathogenic bacteria isolated from aquatic animals. Arch Microbiol. 2023;205(1):36.

    Article  Google Scholar 

  87. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Montgomery MT, Kirchman DL. Induction of chitin-binding proteins during the specific attachment of the marine bacterium Vibrio harveyi to chitin. Appl Environ Microbiol. 1994;60(12):4284–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage–pathogenicity island interactions. Adv Virus Res. 2012;82:91–118.

    Article  CAS  PubMed  Google Scholar 

  90. Arber W. Horizontal gene transfer among bacteria and its role in biological evolution. Life. 2014;4(2):217–24.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Munro J, Oakey J, Bromage E, Owens L. Experimental bacteriophage-mediated virulence in strains of Vibrio harveyi. Dis Aquat Org. 2003;54(3):187–94.

    Article  Google Scholar 

  92. Xu H-S, Roberts N, Singleton F, Attwell R, Grimes DJ, Colwell R. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol. 1982;8(4):313–23.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang X-H, Ahmad W, Zhu X-Y, Chen J, Austin B. Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms. Mar Life sci Technol. 2021;3:189–203.

    Article  CAS  PubMed  Google Scholar 

  94. Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev. 2010;34(4):415–25.

    Article  CAS  PubMed  Google Scholar 

  95. Orruño M, Parada C, Ogayar E, Kaberdin VR, Arana I. Effects of abiotic and biotic factors on Vibrio harveyi ATCC 14126T survival dynamics in seawater microcosms. Aquat Microb Ecol. 2019;83(2):109–18.

    Article  Google Scholar 

  96. Ramaiah N, Ravel J, Straube W, Hill R, Colwell R. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state. J Appl Microbiol. 2002;93(1):108–16.

    Article  CAS  PubMed  Google Scholar 

  97. Li Y, Chen J, Zhao M, Yang Z, Yue L, Zhang X. Promoting resuscitation of viable but nonculturable cells of Vibrio harveyi by a resuscitation-promoting factor-like protein YeaZ. J Appl Microbiol. 2017;122(2):338–46.

    Article  CAS  PubMed  Google Scholar 

  98. Sun F, Chen J, Zhong L, Zhang X-H, Wang R, Guo Q, et al. Characterization and virulence retention of viable but nonculturable Vibrio harveyi. FEMS Microbiol Ecol. 2008;64(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  99. Zhao R, Chen J, Wang Y, Li Y, Kong X, Han Y. Proteolytic activity of Vibrio harveyi YeaZ is related with resuscitation on the viable but non-culturable state. Lett Appl Microbiol. 2020;71(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  100. Deng Y, Xu L, Chen H, Liu S, Guo Z, Cheng C, et al. Prevalence, virulence genes, and antimicrobial resistance of Vibrio species isolated from diseased marine fish in South China. Sci Rep. 2020;10(1):1–8.

    Article  Google Scholar 

  101. Fu S, Ni P, Yang Q, Hu H, Wang Q, Ye S, et al. Delineating the key virulence factors and intraspecies divergence of Vibrio harveyi via whole-genome sequencing. Can J Microbiol. 2021;67(3):231–48.

    Article  CAS  PubMed  Google Scholar 

  102. Waters CM, Bassler BL. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev. 2006;20(19):2754–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Federle MJ, Bassler BL. Interspecies communication in bacteria. J Clin Investig. 2003;112(9):1291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang Q, Anh ND, Bossier P, Defoirdt T. Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi. Front Microbiol. 2014;5:584.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Travers MA, Basuyaux O, Le Goïc N, Huchette S, Nicolas JL, Koken M, et al. Influence of temperature and spawning effort on Haliotis tuberculata mortalities caused by Vibrio harveyi: an example of emerging vibriosis linked to global warming. Glob Chang Biol. 2009;15(6):1365–76.

    Article  Google Scholar 

  106. Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR, Mino S, et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol. 2013;4:414.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Teo JW, Suwanto A, Poh CL. Novel β-lactamase genes from two environmental isolates of Vibrio harveyi. Antimicrob Agents Chemother. 2000;44(5):1309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shome R, Shome B, Soundararajan R. Studies on luminous Vibrio harveyi isolated from Penaeus monodon larvae reared in hatcheries in Andamans. Indian J Fish. 1999;46(2):141–7.

    Google Scholar 

  109. Yu Y, Tang M, Wang Y, Liao M, Wang C, Rong X, et al. Virulence and antimicrobial resistance characteristics assessment of Vibrio isolated from shrimp (Penaeus vannamei) breeding system in south China. Ecotoxicol Environ Saf. 2023;252: 114615.

    Article  CAS  PubMed  Google Scholar 

  110. Karunasagar I, Otta SK, Karunasagar I. Biofilm formation by Vibrio harveyi on surfaces. Aquaculture. 1996;140(3):241–5.

    Article  Google Scholar 

  111. Jayasree L, Janakiram P, Madhavi R. Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). J World Aquac Soc. 2006;37(4):523–32.

    Article  Google Scholar 

  112. Xu H, Zeng Y-H, Yin W-L, Lu H-B, Gong X-X, Zhang N, et al. Prevalence of bacterial coinfections with Vibrio harveyi in the industrialized flow-through aquaculture systems in Hainan Province: a neglected high-risk lethal causative agent to hybrid grouper. Int J Mol Sci. 2022;23(19):11628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gutsell JS. Sulfa drugs and the treatment of furunculosis in trout. Science. 1946;104(2691):85–6.

    Article  PubMed  Google Scholar 

  114. Lulijwa R, Rupia EJ, Alfaro AC. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev Aquac. 2020;12(2):640–63.

    Article  Google Scholar 

  115. Yano Y, Hamano K, Satomi M, Tsutsui I, Ban M, Aue-Umneoy D. Prevalence and antimicrobial susceptibility of Vibrio species related to food safety isolated from shrimp cultured at inland ponds in Thailand. Food Control. 2014;38:30–6.

    Article  Google Scholar 

  116. Shao ZJ. Aquaculture pharmaceuticals and biologicals: current perspectives and future possibilities. Adv Drug Deliv Rev. 2001;50(3):229–43.

    Article  CAS  PubMed  Google Scholar 

  117. Stalin N, Srinivasan P. Molecular characterization of antibiotic resistant Vibrio harveyi isolated from shrimp aquaculture environment in the south east coast of India. Microb Pathog. 2016;97:110–8.

    Article  CAS  PubMed  Google Scholar 

  118. Gootz TD. The global problem of antibiotic resistance. Crit Rev Immunol. 2010;30(1):79–93.

    Article  CAS  PubMed  Google Scholar 

  119. Hawkey P. The growing burden of antimicrobial resistance. J Antimicrob Chemother. 2008;62(suppl 1):i1–9.

    Article  CAS  PubMed  Google Scholar 

  120. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Martínez JL, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev. 2002;15(4):647–79.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Avsever M, Türk N, Tunalıgİl S. The increase of antibiotic resistance in aquaculture and its effects on human health. Bornova Veteriner Kontrol Ve Araştirma Enstitüsü Dergisi. 2010;32(46):19–23.

    Google Scholar 

  123. Kang C-H, Kim Y, Oh SJ, Mok J-S, Cho M-H, So J-S. Antibiotic resistance of Vibrio harveyi isolated from seawater in Korea. Mar Pollut Bull. 2014;86(1–2):261–5.

    Article  CAS  PubMed  Google Scholar 

  124. Zhu Z, Dong C, Weng S, He J. The high prevalence of pathogenic Vibrio harveyi with multiple antibiotic resistance in scale drop and muscle necrosis disease of the hybrid grouper, Epinephelus fuscoguttatus (♀)× E. lanceolatus (♂). China J Fish Dis. 2018;41(4):589–601.

    Article  CAS  PubMed  Google Scholar 

  125. Yang A, Li W, Tao Z, Ye H, Xu Z, Li Y, et al. Vibrio harveyi isolated from marine aquaculture species in eastern China and virulence to the large yellow croaker (Larimichthys crocea). J Appl Microbiol. 2021;131(4):1710–21.

    Article  CAS  PubMed  Google Scholar 

  126. Kazi M, Annapure US. Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol. 2016;53(3):1355–62.

    Article  PubMed  Google Scholar 

  127. Nakai T, Sugimoto R, Park K-H, Matsuoka S, Mori K-I, Nishioka T, et al. Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Org. 1999;37(1):33–41.

    Article  CAS  Google Scholar 

  128. Liu A, Liu Y, Peng L, Cai X, Shen L, Duan M, et al. Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella enteritidis and its biocontrol potential on lettuce and tofu. LWT. 2020;118: 108791.

    Article  CAS  Google Scholar 

  129. Vinod MG, Shivu MM, Umesha K, Rajeeva B, Krohne G, Karunasagar I, et al. Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture. 2006;255(1–4):117–24.

    Article  CAS  Google Scholar 

  130. Karunasagar I, Shivu M, Girisha S, Krohne G, Karunasagar I. Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture. 2007;268(1–4):288–92.

    Article  Google Scholar 

  131. Srinivasan P, Ramasamy P, Brennan G, Hanna R. Inhibitory effects of bacteriophages against shrimp pathogenic Vibrio spp. of the Indian aquaculture environment. Asian J Anim Vet Adv. 2007;2:166–83.

    Article  Google Scholar 

  132. Phumkhachorn P, Rattanachaikunsopon P. Isolation and partial characterization of a bacteriophage infecting the shrimp pathogen Vibrio harveyi. Afr J Microbiol Res. 2010;4(16):1794–800.

    Google Scholar 

  133. Crothers-Stomps C, Høj L, Bourne D, Hall M, Owens L. Isolation of lytic bacteriophage against Vibrio harveyi. J Appl Microbiol. 2010;108(5):1744–50.

    Article  CAS  PubMed  Google Scholar 

  134. Pasharawipas T, Manopvisetcharean J, Flegel T. Phage treatment of Vibrio harveyi: a general concept of protection against bacterial infection. Res J Microbiol. 2011;6(6):560.

    Article  Google Scholar 

  135. Thiyagarajan S, Chrisolite B, Alavandi SV, Poornima M, Kalaimani N, Santiago TC. Characterization of four lytic transducing bacteriophages of luminescent Vibrio harveyi isolated from shrimp (Penaeus monodon) hatcheries. FEMS Microbiol Lett. 2011;325(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  136. Khemayan K, Prachumwat A, Sonthayanon B, Intaraprasong A, Sriurairatana S, Flegel TW. Complete genome sequence of virulence-enhancing Siphophage VHS1 from Vibrio harveyi. Appl Environ Microbiol. 2012;78(8):2790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Patil JR, Desai SN, Roy P, Durgaiah M, Saravanan RS, Vipra A. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi. Dis Aquat Org. 2014;112(2):113–9.

    Article  Google Scholar 

  138. Lal TM, Sano M, Ransangan J. Isolation and characterization of large marine bacteriophage (Myoviridae), VhKM4 infecting Vibrio harveyi. J Aquat Anim Health. 2017;29(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  139. Stalin N, Srinivasan P. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Vet Microbiol. 2017;207:83–96.

    Article  PubMed  Google Scholar 

  140. Ibrahim WNW, Aznan AS, Saari NA, Leong LK, Musa N, Razzak LA, et al. In-vitro characterization of lytic bacteriophage PhVh6 as potential biocontrol agent against pathogenic Vibrio harveyi. Aquac Aquar Conserv Legis. 2017;10(1):64–76.

    Google Scholar 

  141. Choudhury TG, Maiti B, Venugopal M, Karunasagar I. Influence of some environmental variables and addition of r-lysozyme on efficacy of Vibrio harveyi phage for therapy. J Biosci. 2019;44(1):1–9.

    Article  CAS  Google Scholar 

  142. Misol GN Jr, Kokkari C, Katharios P. Biological and genomic characterization of a novel jumbo bacteriophage, vB_VhaM_pir03 with broad host lytic activity against Vibrio harveyi. Pathogens. 2020;9(12):1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wu L, Tian Y, Pang M, Yang Z, Bao H, Zhou Y, et al. A novel vibriophage vB_VhaS_PcB-1G capable of inhibiting virulent Vibrio harveyi pathogen. Aquaculture. 2021;542: 736854.

    Article  CAS  Google Scholar 

  144. Cui H, Cong C, Wang L, Li X, Li J, Yang H, et al. Protective effectiveness of feeding phage cocktails in controlling Vibrio harveyi infection of turbot Scophthalmus maximus. Aquaculture. 2021;535: 736390.

    Article  CAS  Google Scholar 

  145. Droubogiannis S, Katharios P. Genomic and biological profile of a novel bacteriophage, Vibrio phage virtus, which improves survival of Sparus aurata larvae challenged with Vibrio harveyi. Pathogens. 2022;11(6):630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gildea L, Ayariga JA, Robertson BK. Bacteriophages as biocontrol agents in livestock food production. Microorganisms. 2022;10(11):2126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhao Y, An J, Su H, Li B, Liang D, Huang C. Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: a sustainable path. Food Res Int. 2022;155:111096.

    Article  CAS  PubMed  Google Scholar 

  148. Wagh RV, Priyadarshi R, Rhim J-W. Novel bacteriophage-based food packaging: an innovative food safety approach. Coatings. 2023;13(3):609.

    Article  CAS  Google Scholar 

  149. Agboluaje M, Sauvageau D. Bacteriophage production in bioreactors. Bacteriophage Ther Methods Mol Biol. 2018;1693:173–93.

    Article  CAS  Google Scholar 

  150. Malik DJ. Approaches for manufacture, formulation, targeted delivery and controlled release of phage-based therapeutics. Curr Opin Biotechnol. 2021;68:262–71.

    Article  CAS  PubMed  Google Scholar 

  151. Sauvageau D, Storms Z, Cooper DG. Synchronized populations of Escherichia coli using simplified self-cycling fermentation. J Biotechnol. 2010;149(1–2):67–73.

    Article  CAS  PubMed  Google Scholar 

  152. Sauvageau D, Cooper DG. Two-stage, self-cycling process for the production of bacteriophages. Microb Cell Factories. 2010;9(1):81.

    Article  Google Scholar 

  153. Cinquerrui S, Mancuso F, Vladisavljević GT, Bakker SE, Malik DJ. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front Microbiol. 2018;9:2172.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Leung SS, Morales S, Britton W, Kutter E, Chan H-K. Microfluidic-assisted bacteriophage encapsulation into liposomes. Int J Pharm. 2018;545(1–2):176–82.

    Article  CAS  PubMed  Google Scholar 

  155. Ma Y, Pacan JC, Wang Q, Sabour PM, Huang X, Xu Y. Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocoll. 2012;26(2):434–40.

    Article  CAS  Google Scholar 

  156. Ma Y, Pacan JC, Wang Q, Xu Y, Huang X, Korenevsky A, et al. Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol. 2008;74(15):4799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Colom J, Cano-Sarabia M, Otero J, Aríñez-Soriano J, Cortés P, Maspoch D, et al. Microencapsulation with alginate/CaCO3: a strategy for improved phage therapy. Sci Rep. 2017;7(1):41441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rosner D, Clark J. Formulations for bacteriophage therapy and the potential uses of immobilization. Pharmaceuticals. 2021;14(4):359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. O’connell L, Marcoux PR, Roupioz Y. Strategies for surface immobilization of whole bacteriophages: a review. ACS Biomater Sci Eng. 2021;7(6):1987–2014.

    Article  PubMed  Google Scholar 

  160. Chen J, Alcaine SD, Jiang Z, Rotello VM, Nugen SR. Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe. Anal Chem. 2015;87(17):8977–84.

    Article  CAS  PubMed  Google Scholar 

  161. Jia Y, Qin M, Zhang H, Niu W, Li X, Wang L, et al. Label-free biosensor: a novel phage-modified light addressable potentiometric sensor system for cancer cell monitoring. Biosens Bioelectron. 2007;22(12):3261–6.

    Article  CAS  PubMed  Google Scholar 

  162. Jabrane T, Dubé M, Mangin PJ, (Eds). Bacteriophage immobilization on paper surface: effect of cationic pre-coat layer. Proceedings of Canadian PAPTAC 95th annual meeting. 2009;31–314.

  163. Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy S. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens Bioelectron. 2009;24(12):3645–51.

    Article  CAS  PubMed  Google Scholar 

  164. Tawil N, Sacher E, Mandeville R, Meunier M. Strategies for the immobilization of bacteriophages on gold surfaces monitored by surface plasmon resonance and surface morphology. J Phys Chem C. 2013;117(13):6686–91.

    Article  CAS  Google Scholar 

  165. Lone A, Anany H, Hakeem M, Aguis L, Avdjian A-C, Bouget M, et al. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int J Food Microbiol. 2016;217:49–58.

    Article  CAS  PubMed  Google Scholar 

  166. Anany H, Chen W, Pelton R, Griffiths M. Biocontrol of Listeria monocytogenes and Escherichia coli O157: H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol. 2011;77(18):6379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tytgat HL, Schoofs G, Driesen M, Proost P, Van Damme EJ, Vanderleyden J, et al. Endogenous biotin-binding proteins: an overlooked factor causing false positives in streptavidin-based protein detection. Microb Biotechnol. 2015;8(1):164–8.

    Article  CAS  PubMed  Google Scholar 

  168. Ashiani D, Keihan AH, Rashidiani J, Dashtestani F, Eskandari K. Oriented t4 bacteriophage immobilization for recognition of Escherichia coli in capacitance method. Int J Electrochem Sci. 2016;11(12):10087–95.

    Article  CAS  Google Scholar 

  169. Tolba M, Minikh O, Brovko L, Evoy S, Griffiths M. Oriented immobilization of bacteriophages for biosensor applications. Appl Environ Microbiol. 2010;76(2):528–35.

    Article  CAS  PubMed  Google Scholar 

  170. Choi I, Chang Y, Kim SY, Han J. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chem. 2021;346: 128883.

    Article  CAS  PubMed  Google Scholar 

  171. Mattey M. Treatment of bacterial infections in aquaculture. Patent 10,849,942 B2 U.S. 2020.

  172. Fernández L, Gutiérrez D, Rodríguez A, García P. Application of bacteriophages in the agro-food sector: a long way toward approval. Front Cell Infect Microbiol. 2018;8:296.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Połaska M, Sokołowska B. Bacteriophages—a new hope or a huge problem in the food industry. AIMS Microbiol. 2019;5(4):324.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zhuhua L, Dezan Y, Yanping Y. Vibrio harveyi giant VP4B and application thereof. Patent CN103555671A Washington, DC: Patent Trademark Office. 2014.

  175. Nagel T, Musila L, Muthoni M, Nikolich M, Nakavuma JL, Clokie MR. Phage banks as potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world. Curr Opin Virol. 2022;53: 101208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kahn LH, Bergeron G, Bourassa MW, De Vegt B, Gill J, Gomes F, et al. From farm management to bacteriophage therapy: strategies to reduce antibiotic use in animal agriculture. Ann N Y Acad Sci. 2019;1441(1):31–9.

    Article  PubMed  PubMed Central  Google Scholar 

  177. García R, Latz S, Romero J, Higuera G, García K, Bastías R. Bacteriophage production models: an overview. Front Microbiol. 2019;10:1187.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Pradip Ghosh, Director, Midnapore City College for providing essential support to carry out this work.

Funding

The authors are grateful to Science and Engineering Research Board (SERB), a statutory body of the Department of Science & Technology, Govt. of India (Sanction Order No. CRG/2019/001750 dated 14th January, 2020) for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

SG: formal analysis, resources, writing—original draft, writing—review and editing. PK: formal analysis, resources, writing—original draft, writing—review and editing. SC: formal analysis, resources, writing—review and editing. SP: formal analysis, resources, writing—review and editing. KCM: formal analysis, resources, writing—review and editing. KG: conceptualization, writing—original draft, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Kuntal Ghosh.

Ethics declarations

Conflict of interest

All the authors declare that there is no financial or any other competing interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Kar, P., Chakrabarti, S. et al. Pathogenicity of Vibrio harveyi and its biocontrol using bacteriophages. Syst Microbiol and Biomanuf 3, 552–570 (2023). https://doi.org/10.1007/s43393-023-00178-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00178-z

Keywords

Navigation