Skip to main content
Log in

Emulsion-based evolution of Escherichia coli for higher growth yield on D-xylose identifies central role of cyclic AMP

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

D-xylose is an abundant sugar found in plant biomass and can be used as a renewable feedstock for the microbial production of diverse biofuels and bioproducts. However, D-xylose metabolism is slow in many industrial microorganisms, at least as compared to glucose metabolism. Not surprisingly, a number of approaches have been developed for improving D-xylose metabolism in diverse microorganisms. In this work, we applied a previously developed evolution strategy based on media-in-oil emulsions for improving the growth yield of Escherichia coli NCM3722 on D-xylose. After 30 rounds of evolutions, we isolated multiple mutants with increased growth yield on D-xylose. In addition, we also observed similar increases in the growth rate. Three mutants were selected for whole-genome sequencing. Two mutants had an amber stop mutation in adenylate cyclase, which truncates nearly 60% of the enzyme. However, the ability of this mutant to grow on xylose indicated that truncated enzyme, lacking the C-terminal regulatory domain, is still active. The other mutant had a point mutation in the cyclic AMP receptor protein (CRP), near the high affinity binding site for cyclic AMP. Both mutations, when introduced into wild type E. coli, were able to increase the growth yields at levels similar to the isolated mutants. In addition to D-xylose, these mutant strains and their genetic mimics also exhibited higher growth rates and yields on glucose, lactose, and L-arabinose. These results suggest that the improved growth rates and yields are due to changes in the production and sensing of intracellular cyclic AMP concentrations and also suggest native concentrations are suboptimal with respect to the growth rate and yield under the growth conditions tested. Collectively, these results may prove useful for engineering strains of E. coli for high-density fermentations or protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gírio FM, et al. Hemicelluloses for fuel ethanol: A review. Bioresour Technol. 2010;101(13):4775–800.

    Article  PubMed  Google Scholar 

  2. Kotter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1993;38(6):776–83.

    Article  Google Scholar 

  3. Zhang M, et al. Metabolic engineering of a pentose metabolism pathway in ethanologenic zymomonas mobilis. Science. 1995;267(5195):240–3.

    Article  CAS  PubMed  Google Scholar 

  4. Jagtap SS, Rao CV. Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol. 2018;102(21):9015–36.

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Chen Y, Nielsen J. Harnessing xylose pathways for biofuels production. Curr Opin Biotechnol. 2019;57:56–65.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang G-C, et al. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol. 2015;29:49–57.

    Article  PubMed  Google Scholar 

  7. Wu Y, et al. Metabolic engineering strategies for co-utilization of carbon sources in microbes. Bioengineering. 2016;3(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fox KJ, Prather KLJ. Carbon catabolite repression relaxation in Escherichia coli: global and sugar-specific methods for glucose and secondary sugar co-utilization. Curr Opin Chem Eng. 2020;30:9–16.

    Article  Google Scholar 

  9. Sievert C, et al. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proc Natl Acad Sci U S A. 2017;114(28):7349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song S, Park C. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol. 1997;179(22):7025–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993;57(3):543–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aidelberg G, et al. Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst Biol. 2014;8:133.

    Article  PubMed  PubMed Central  Google Scholar 

  13. You C, et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature. 2013;500(7462):301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dragosits M, Mattanovich D. Adaptive laboratory evolution – principles and applications for biotechnology. Microb Cell Fact. 2013;12:64.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Portnoy VA, Bezdan D, Zengler K. Adaptive laboratory evolution–harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol. 2011;22(4):590–4.

    Article  CAS  PubMed  Google Scholar 

  16. Bachmann H, et al. Availability of public goods shapes the evolution of competing metabolic strategies. Proc Natl Acad Sci U S A. 2013;110(35):14302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Tatenhove-Pel RJ, et al. Serial propagation in water-in-oil emulsions selects for Saccharomyces cerevisiae strains with a reduced cell size or an increased biomass yield on glucose. Metab Eng. 2021;64:1–4.

    Article  PubMed  Google Scholar 

  18. Soupene E, et al. Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. J Bacteriol. 2003;185(18):5611–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 2001;56(1):2–4.

    Article  Google Scholar 

  20. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014;1151:165–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown SD, Jun S. Complete genome sequence of Escherichia coli NCM3722. Genome Announc. 2015. https://doi.org/10.1128/genomeA.00879-15.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sharan SK, et al. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc. 2009;4(2):206–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Witkin EM. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976;40(4):869–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sega GA. A review of the genetic effects of ethyl methanesulfonate. Mutat Res. 1984;134(2–3):113–42.

    Article  CAS  PubMed  Google Scholar 

  26. Koop AH, Hartley M, Bourgeois S. Analysis of the cya locus of Escherichia coli. Gene. 1984;28(2):133–46.

    Article  CAS  PubMed  Google Scholar 

  27. Roy A, et al. Two functional domains in adenylate cyclase of Escherichia coli. J Mol Biol. 1983;165(1):197–202.

    Article  CAS  PubMed  Google Scholar 

  28. Bren A, et al. Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci Rep. 2016;6:24834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuhlman T, et al. Combinatorial transcriptional control of the lactose operon of Escherichia coli. Proc Natl Acad Sci U S A. 2007;104(14):6043–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schleif R. Regulation of the l-arabinose operon of Escherichia coli. Trends Genet. 2000;16(12):559–65.

    Article  CAS  PubMed  Google Scholar 

  31. Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006;70(4):939–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shin D, et al. Selective regulation of ptsG expression by Fis Formation of either activating or repressing nucleoprotein complex in response to glucose. J Biol Chem. 2003;278(17):14776–81.

    Article  CAS  PubMed  Google Scholar 

  33. Kimata K, et al. cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc Natl Acad Sci U S A. 1997;94(24):12914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aiba H, et al. Mutations that alter the allosteric nature of cAMP receptor protein of Escherichia coli. EMBO J. 1985;4(12):3329–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Popovych N, et al. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci U S A. 2009;106(17):6927–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang L, et al. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J Biotechnol. 2015;199:55–61.

    Article  CAS  PubMed  Google Scholar 

  37. Chong H, et al. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS ONE. 2013;8(10):e77422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Basak S, Jiang R. Enhancing E coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLoS ONE. 2012;7(12):e51179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Basak S, Song H, Jiang R. Error-prone PCR of global transcription factor cyclic AMP receptor protein for enhanced organic solvent (toluene) tolerance. Process Biochem. 2012;47(12):2152–8.

    Article  CAS  Google Scholar 

  40. Chong H, et al. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS ONE. 2013;8(2):e57628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H, et al. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol Bioeng. 2012;109(5):1165–72.

    Article  CAS  PubMed  Google Scholar 

  42. Chong H, et al. Enhancing E coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Biotechnol Bioeng. 2014;111(4):700–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, et al. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol. 2012;94(4):1107–17.

    Article  CAS  PubMed  Google Scholar 

  44. Desai TA, et al. Engineering transcription factors with novel DNA-binding specificity using comparative genomics. Nucleic Acids Res. 2009;37(8):2493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lawson CL, et al. Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol. 2004;14(1):10–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ammar EM, Wang X, Rao CV. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Sci Rep. 2018. https://doi.org/10.1038/s41598-017-18704-0.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Energy Biosciences Institute and by the DOE Center for Advanced Bioenergy and Bioproducts Innovation (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0018420). Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Energy.

Funding

US Department of Energy, DE-SC0018420, CV Rao.

Author information

Authors and Affiliations

Authors

Contributions

JO, EZ, and CR conceived the project. JO, EZ, and XW designed and performed the experiments. JO, EZ, JL, XW, and CR analyzed the data. JO, XW, and CR wrote the manuscript and designed the figures. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Christopher V. Rao.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orr, J.S., Zen, E., Wang, X. et al. Emulsion-based evolution of Escherichia coli for higher growth yield on D-xylose identifies central role of cyclic AMP. Syst Microbiol and Biomanuf 3, 730–738 (2023). https://doi.org/10.1007/s43393-022-00136-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00136-1

Keywords

Navigation