Skip to main content

Advertisement

Log in

Improvement of saccharification of native grass, Pennisetum sp. using cellulase from isolated Aspergillus fumigatus for bioethanol production: an insight into in silico molecular modelling, docking and dynamics studies

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Lignocellulosic grass biomass is potential substrate for economical and sustainable bioethanol production. However, the processing cost of bioethanol that majorly includes the hydrolysis of cellulose by cellulases is still a major concern for its industrial production. Thus, knowledge on the sequence to the structural study of cellulase enzyme with consideration of its catalytic region can give important information for effective enzyme engineering and consequently towards enhanced bioethanol production from Pennisetum sp. Therefore, in this study, sequence conservativeness of different cellulosic site among a group of endoglucanase family of cellulase from previously isolated Aspergillus species has been determined. Furthermore, comparative molecular modeling of the endoglucanase from eight different Aspergillus species including Aspergillus fumigatus was conducted and the obtained structures revealed a high degree of difference in their conformational folds. Analysis from InterProScan revealed that the modeled endoglucanase has similar types of domains and share homology with protein family, such as glycoside hydrolase family-61 and fungal cellulose binding domain. Furthermore, molecular docking and interaction studies demonstrated the presence of residues in the endoglucanase of A. fumigatus viz. His20, His88, Asp96, Ala99, Ser100, Ser101, His102, His169, Glu170, Arg173, Glu178, and Tyr218 that are responsible in forming the substrate interaction. An interesting molecular phenomenon, i.e., catalytic promiscuity has been noted for all the substrate bound complexes of A. fumigatus endoglucanase which also depicts the degree of ligand binding efficacy of the studied enzyme. The molecular interaction study, binding energy analysis and molecular dynamics simulation, demonstrated that heteromeric substrate XylGlc3 is more strongly interacting with the receptor enzyme. Overall, the present findings revealed that important amino acid residues can help in increasing the specificity of endoglucanase from A. fumigatus towards hydrolysis of Pennisetum sp. and other biomass that has an adequate amount of XylGlc3, for possible industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zoghlami A, Paës G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem. 2019;7:874. https://doi.org/10.3389/fchem.2019.00874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohapatra S, Jena S, Jena PK, Badhai J, Acharya AN, Thatoi H. Partial consolidated bioprocessing of pretreated Pennisetum sp. by anaerobic thermophiles for enhanced bioethanol production. Chemosphere. 2020;256:127126. https://doi.org/10.1016/j.chemosphere.2020.127126.

    Article  CAS  PubMed  Google Scholar 

  3. Mohapatra S, Mishra C, Behera SS, Thatoi H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—a review. Renew Sustain Energ. 2017;78:1007–32. https://doi.org/10.1016/j.rser.2017.05.026.

    Article  CAS  Google Scholar 

  4. Irmak S. Biomass as raw material for production of high-value products. In: Tumuluru JS, Editors. Biomass volume estimation and valorization for energy; 2017. pp. 201–25. https://doi.org/10.5772/65507.

  5. Ejaz U, Sohail M, Ghanemi A. Cellulases: from bioactivity to a variety of industrial applications. Biomimetics. 2021;6(3):44. https://doi.org/10.3390/biomimetics6030044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yadav PS, Shruthi K, Prasad BS, Chandra MS. Enhanced production of β-glucosidase by new strain Aspergillus protuberus on solid state fermentation in rice husk. Int J Curr Microbiol App Sci. 2016;5(12):551–64. https://doi.org/10.20546/ijcmas.2016.512.061.

    Article  CAS  Google Scholar 

  7. Agrawal D, Matkar K. Enhancement of cellulase production by substrate manipulation in three Aspergillus sp. Indian J Appl Res. 2016;6:3.

    Google Scholar 

  8. Mohapatra S, Thatoi HN. Purification and characterization of extracellular enzyme from Aspergillus fumigatus and its application on a pennisetumsp for enhanced glucose production. CJB. 2017;1(1):273. https://doi.org/10.24870/cjb.2017-a257.

    Article  Google Scholar 

  9. Pensupa N, Jin M, Kokolski M, Archer DB, Du C. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour Technol. 2013;149:261–7. https://doi.org/10.1016/j.biortech.2013.09.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uchiyama T, Uchihashi T, Nakamura A, Watanabe H, Kaneko S, Samejima M, Igarashi K. Convergent evolution of processivity in bacterial and fungal cellulases. PNAS. 2020;117(33):19896–903. https://doi.org/10.1073/pnas.2011366117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dey P, Pal P, Kevin JD, Das DB. Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process—a critical review. Rev Chem Eng. 2020;36(3):333–67. https://doi.org/10.1515/revce-2018-0014.

    Article  Google Scholar 

  12. Jayasekara S, Ratnayake R. Microbial cellulases: an overview and applications. Cellulose. 2019;2019:22. https://doi.org/10.5772/intechopen.84531.

    Article  CAS  Google Scholar 

  13. Dodda SR, Sarkar N, Jain P, Aikat K, Mukhopadhyay SS. Improved catalytic activity and stability of cellobiohydrolase (Cel6A) from the Aspergillus fumigatus by rational design. Protein Eng Des Sel. 2020;2020:33. https://doi.org/10.1007/s00253-021-11723-y.

    Article  CAS  Google Scholar 

  14. Heckmann CM, Paradisi F. Looking back: a short history of the discovery of enzymes and how they became powerful chemical tools. Chem Cat Chem. 2020;12(24):6082. https://doi.org/10.1002/ctc.202001107.

    Article  CAS  PubMed  Google Scholar 

  15. Venkataraman S, Prasad BV, Selvarajan R. RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses. 2018;10(2):76. https://doi.org/10.3390/v10020076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yadav S, Pandey AK, Dubey SK. Molecular modeling, docking and simulation dynamics of β-glucosidase reveals high-efficiency, thermo-stable, glucose tolerant enzyme in Paenibacilluslautus BHU3 strain. Int J BiolMacromol. 2021;168:371–82. https://doi.org/10.1016/j.ijbiomac.2020.12.059.

    Article  CAS  Google Scholar 

  17. Mohapatra S, Padhy S, Mohapatra PKD, Thatoi HN. Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus. Bioresour technol. 2018;253:262–72. https://doi.org/10.1016/j.biortech.2018.01.023.

    Article  CAS  PubMed  Google Scholar 

  18. Mohapatra S, Pattathil S, Thatoi HN. Structural and functional characterization of two Pennisetum sp. biomass during ultrasono-assisted alkali pretreatment and enzymatic hydrolysis for understanding the mechanism of targeted delignification and enhanced saccharification. ACS Sustain Chem Eng. 2017;5(8):6486–97. https://doi.org/10.1021/acssuschemeng.7b00596.

    Article  CAS  Google Scholar 

  19. Larki MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8. https://doi.org/10.1093/bioinformatics/btm404.

    Article  CAS  Google Scholar 

  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4. https://doi.org/10.1093/molbev/msw054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.

    Article  CAS  PubMed  Google Scholar 

  22. Lindahl E, Azuara C, Koehl P, Delarue M. NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res. 2006;34(1):W52–6. https://doi.org/10.1093/nar/gkl082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: structural summaries of PDB entries. Protein Sci. 2018;27:129–34.

    Article  CAS  PubMed  Google Scholar 

  24. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2:1511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–5.

    Article  PubMed  Google Scholar 

  26. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Vegas AS, Scheremetjew M, Yong SY, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40. https://doi.org/10.1093/bioinformatics/btu031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simmons TJ, Frandsen KEH, Ciano L, Tryfona T, Lenfant N, Poulsen JC, Wilson LFL, Tandrup T, Tovborg M, Schnorr K, Johansen KS, Henrissat B, Walton PH, Lo Leggio L, Dupree P. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Nat Commun. 2017;8:1064–1064. https://doi.org/10.1038/s41467-017-01247-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D. 2004;60(12):2126–32. https://doi.org/10.1107/S0907444904019158.

    Article  CAS  PubMed  Google Scholar 

  29. De-Lano WL. Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002;40(1):82–92.

    Google Scholar 

  30. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988;16(22):10881–90. https://doi.org/10.1093/nar/16.22.10881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Antunes DA, Moll M, Devaurs D, Jackson KR, Lizée G, Kavraki LE. DINC 2.0: a new protein–peptide docking webserver using an incremental approach. Can Res. 2017;77(21):e55–7. https://doi.org/10.1158/0008-5472.CAN-17-0511.

    Article  CAS  Google Scholar 

  32. Piovesan D, Minervini G, Tosatto SC. The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res. 2016;44(W1):W367–74. https://doi.org/10.1093/nar/gkw315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. https://doi.org/10.1016/j.softx.2015.06.001.

    Article  Google Scholar 

  34. Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: International conference on exascale applications and software; 2014. pp. 3–27. Springer, Cham. https://doi.org/10.1007/978-3-319-15976-8_1.

  35. Schüttelkopf AW, Van Aalten DM. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D. 2004;60(8):1355–63. https://doi.org/10.1107/S0907444904011679.

    Article  CAS  PubMed  Google Scholar 

  36. vanGunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger PKHC, Mark AE, Scott WRP, Tironi IG. Biomolecular simulation: the GROMOS96 manual and user guide. VdfHochschulverlag AG ETH Zürich Zürich. 1996;86:1–1044.

    Google Scholar 

  37. Miyamoto S, Kollman PA. SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992;13(8):952–62. https://doi.org/10.1002/jcc.540130805.

    Article  CAS  Google Scholar 

  38. Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91(24):6269–71. https://doi.org/10.1021/j100308a038.

    Article  CAS  Google Scholar 

  39. Berendsen HJ, Postma JV, van Gunsteren WF, DiNola ARHJ, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–90. https://doi.org/10.1063/1.448118.

    Article  CAS  Google Scholar 

  40. Hess B, Kutzner C, Van Der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–47. https://doi.org/10.1021/ct700301q.

    Article  CAS  PubMed  Google Scholar 

  41. Vaught A. Graphing with Gnuplot and Xmgr: two graphing packages available under linux. Linux J. 1996;1996(28es):7es.

    Google Scholar 

  42. Ren J, Yuan X, Li J, Lin S, Yang B, Chen C, Zhao J, Zheng W, Liao H, Yang Z, Qu Z. Assessing the performance of the g_mmpbsa tools to simulate the inhibition of oseltamivir to influenza virus neuraminidase by molecular mechanics Poisson-Boltzmann surface area methods. J Chin Chem Soc. 2020;67(1):46–53. https://doi.org/10.1002/jccs.201900148.

    Article  CAS  Google Scholar 

  43. Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, Janmeda P, Jain D, Panneerselvam P, Shrivastav R, Pant K. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/3CLpro: molecular docking and simulation studies of three pertinent medicinal plant natural components. CRPHAR. 2021;2:100038.

    PubMed  PubMed Central  Google Scholar 

  44. Paul M, Panda G, Mohapatra PKD, Thatoi H. Study of structural and molecular interaction for the catalytic activity of cellulases: an insight in cellulose hydrolysis for higher bioethanol yield. J Mol Struct. 2020;1204:127547. https://doi.org/10.1016/j.molstruc.2019.127547.

    Article  CAS  Google Scholar 

  45. Ducros V, Czjzek M, Belaich A, Gaudin C, Fierobe HP, Belaich JP, Davies GJ, Haser R. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure. 1995;3(9):939–49. https://doi.org/10.1016/S0969-2126(01)00228-3.

    Article  CAS  PubMed  Google Scholar 

  46. Tamboli AS, Waghmare PR, Khandare RV, Govindwara SP. Comparative analyses of enzymatic activity, structural study and docking of fungal cellulases. Gene Rep. 2017;9:54–60. https://doi.org/10.1016/j.genrep.2017.08.008.

    Article  Google Scholar 

  47. Dodda SR, Sarkar N, Aikat K, Krishnaraj RN, Bhattacharjee S, Bagchi AS, Mukhopadhyay S. Insights from the molecular dynamics simulation of cellobiohydrolase Cel6A molecular structural model from Aspergillus fumigatus NITDGPKA3. Comb Chem High Throughput Screen. 2016;19(4):325–33. https://doi.org/10.2174/138620731904160413193236.

    Article  CAS  PubMed  Google Scholar 

  48. Momeni MH, Payne CM, Hansson H, Mikkelsen NE, Svedberg J, Engström Å, Sandgren M, Beckham GT, Ståhlberg J. Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus heterobasidionirregulare. J Biol Chem. 2013;288(8):5861–72. https://doi.org/10.1074/jbc.M112.440891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tryfona T, Sorieul M, Feijao C, Stott K, Rubtsov DV, Anders N, Dupree P. Development of an oligosaccharide library to characterise the structural variation in glucuronoarabinoxylan in the cell walls of vegetative tissues in grasses. Biotechnol Biofuels. 2019;12(1):109. https://doi.org/10.1186/s13068-019-1451-6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Albersheim P, Darvill A. A xyloglucan-specific endo-β-1, 4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characaterization of the recombinant enzyme. Glycobiology. 1999;9:93100.

    Google Scholar 

  51. Pol D, Menon V, Rao M. Biochemical characterization of a novel thermostablexyloglucanase from an alkalothermophilic Thermomonospora sp. Extremophiles. 2012;16:135146.

    Article  Google Scholar 

  52. Powlowski J, Mahajan S, Schapira M, Master ER. Substrate recognition and hydrolysis by a fungal xyloglucan-specific family 12 hydrolase. Plant Physiol Biochem. 2009;38:3755Pinaga. https://doi.org/10.1093/glycob/9.1.93.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Bioinformatics Facility, Department of Biotechnology and authorities of Maharaja Sriram Chandra Bhanja Deo University, Baripada, India for the provision of computational support. Authors acknowledge Mr. Sumanta Kumar Sahu, Central University of South Bihar for his technical assistance in MD simulation.

Author information

Authors and Affiliations

Authors

Contributions

HT conceptualized and supervised the whole research work and made overall editing in manuscript. SM and MP performed most of the methods and analysed the results in this work and also helped in writing the manuscript. SB and MM helped in conducting some of the analyses.

Corresponding author

Correspondence to Hrudayanath Thatoi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thatoi, H., Mohapatra, S., Paul, M. et al. Improvement of saccharification of native grass, Pennisetum sp. using cellulase from isolated Aspergillus fumigatus for bioethanol production: an insight into in silico molecular modelling, docking and dynamics studies. Syst Microbiol and Biomanuf 3, 394–413 (2023). https://doi.org/10.1007/s43393-022-00114-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00114-7

Keywords

Navigation