Skip to main content

Advertisement

Log in

Potential of edible insects as source of functional foods: biotechnological approaches for improving functionality

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Consumption of insects as food has a long history and has been documented by many researches. Globally, it is extensively practiced in Africa, Asia, Australia, and Latin America as traditional food providing nutritional, economic and ecological benefit for rural communities. In today’s world, edible insects are limelight by many researchers and industrialist due to the presence of enormous nutrient potential as well as bioactive compounds. This review mainly focuses on the potential of edible insect for its diverse nutraceutical properties, production and processing as a functional food and its acceptance and boost in the market trends in global scenario. The consumption of edible insects is purely based on ethnic traditional knowledge of the local communities. Previous studies on edible insects have shown their potential as source of nutraceuticals with promote health benefit and can be an alternative source of protein. Most of the edible insects are rich source of protein, energy, vitamins, essential fatty acids and minerals. Beyond these insects can be a source of bioactive compounds especially peptides, which can be applied in functional food industry. In many countries, the traditional knowledge of entomophagy is being applied for production of value-added products using modern technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Seni A. Edible insects: future prospects for dietary regimen. Inter J Curr Microbiol Appl Sci. 2017;6(8):1302–14.

    Article  Google Scholar 

  2. Voltolini S, Pellegrini S, Contatore M, Bignardi D, Minale P. New risks from ancient food dyes: cochineal red allergy. Eur Ann Allergy Clin Immunol. 2014;46(6):232–3.

    CAS  PubMed  Google Scholar 

  3. Kapesa K, Devi WD, Bonysana RK, Rajashekar Y. Anthropoentomophagy and ethnoentomology among ethnic Mao–Naga and Poumai–Naga Tribes of Manipur, North–East India. J Insects Food Feed. 2020;6(5):507–14.

    Article  Google Scholar 

  4. Jongema Y. List of edible insects of the world (April 1, 2017). Wageningen University. The Netherlands. 2017. http://www.wageningenur.nl/en/Expertise-Services/Chair-groups/PlantSciences/Laboratory-of-Entomology/Edibleinsects/Worldwide-species-list.htm. Accessed 30 Mar 2018.

  5. Chakravorty J, Ghosh S, Jung C, Meyer-Rochow VB. Nutritional composition of Chondacris rosea and Brachytrupes orientalis: two common insects used as food by tribes of Arunachal Pradesh, India. J Asia Pac Entomol. 2016;17(3):407–15.

    Article  Google Scholar 

  6. Chen X, Feng Y, Chen Z. Common edible insects and their utilization in China. Entomol Res. 2009;39(5):299–303.

    Article  Google Scholar 

  7. Hazarika R, Goyari B. Entomophagy among the Bodos of Udalguri District, Btad, Assam. India Asian J Sci Technol. 2017;08(10):6228–33.

    Google Scholar 

  8. Illgner P, Nel E. The geography of edible insects in sub-Saharan Africa: a study of the mopane caterpillar. Geogr J. 2000;166(4):336–51.

    Article  Google Scholar 

  9. Srivastava SK, Babu N, Pandey H. Traditional insect bioprospecting—as human food and medicine. Indian J Tradit Knowl. 2009;8(4):485–94.

    Google Scholar 

  10. Yin W, Liu J, Liu H, Lv B. Nutritional value, food ingredients, chemical and species composition of edible insects in china, future foods, Heimo Mikkola, IntechOpen, 2017. https://doi.org/10.5772/intechopen.70085. https://www.intechopen.com/chapters/56341

  11. Roos N, Van Huis A. Consuming insects: are there health benefits? J Insects Food Feed. 2017;3(4):225–9.

    Article  Google Scholar 

  12. Sogari G, Liu A, Li J. Understanding edible insects as food in Western and Eastern Societies. In: Environmental, health, and business opportunities in the new meat alternatives market. 2019: pp. 166–181. IGI Global. https://doi.org/10.4018/978-1-5225-7350-0.ch009.

  13. Hartmann C, Shi J, Giusto A, Siegrist M. The psychology of eating insects: a cross-cultural comparison between Germany and China. Food Qual Prefer. 2015;44:148–56.

    Article  Google Scholar 

  14. Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. Edible insects: future prospects for food and feed security (no. 171). Food and Agriculture Organization of the United Nations. 2013; pp. 67–79.

  15. Ayieko M, Oriaro V, Nyambuga IA. Processed products of termites and lake flies: improving entomophagy for food security within the Lake Victoria region. Afric J Food Agric Nutr Dev. 2010;10(2):2085–98.

    Google Scholar 

  16. Vantomme P, Göhler D, N’Deckere-Ziangba F. Contribution of forest insects to food security and forest conservation: the example of caterpillars in Central Africa. ODI Wildl Policy brief, 2004;3(4):1–4.

  17. Allotey J, Mpuchane S. Utilization of useful insects as food source. Afric J Food Agric Nutr Dev. 2003;3(2):1–6.

    Google Scholar 

  18. Arcluster. 2020: Edible insects market report covers the market sizes and forecasts of segments: raw; coated—bars, candy, chocolate, cookies, chips, crackers, snack packs powdered—flour, baking powder, protein powder, powdered salts, others; paste insects: beetles, caterpillars, bees, wasps, ants, grasshoppers, locusts and crickets, cicades, plant hoppers, scale insects, tree bugs, termites, flies, others regions: North America, APAC, Europe, Middle-East, Central/Latin America for the period 2020–2025.

  19. Transparency Market Research. Edible insects market—global industry size, market share, trends, analysis, and forecast 2016–2024. 2020. https://www.transparencymarketresearch.com/edible-insects-market.html. Accessed 13 Aug 2020.

  20. Meticulous Research. Edible Insects Market Worth $7.96 Billion by 2030—Exclusive Report by Meticulous Research. 2019. https://www.meticulousresearch.com/request-samplereport/cp_id=3881. Accessed 22 Jul 2020.

  21. Melgar-Lalanne G, Hernández-Álvarez AJ, Salinas-Castro A. Edible insects processing: traditional and innovative technologies. Compr Rev Food Sci Food Saf. 2019;18(4):1166–91.

    Article  CAS  PubMed  Google Scholar 

  22. Bernard T, Womeni HM. Entomophagy: insects as food. Insect Physiol Ecol. Rijeka: InTech; 2017. p. 233–54.

    Google Scholar 

  23. Raksakantong P, Meeso N, Kubola J, Siriamornpun S. Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res Inter. 2010;43(1):350–5.

    Article  CAS  Google Scholar 

  24. Bukkens SG. Insects in the human diet: nutritional aspects. In: Paoletti MG, editor. Ecological implications of minilivestock: Potential of insects, rodents, frogs and snails. Enfield: Science Publisher; 2005. p. 545–77.

    Google Scholar 

  25. Rumpold BA, Schlüter OK. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res. 2013;57(5):802–23.

    Article  CAS  PubMed  Google Scholar 

  26. Agbidye FS, Ofuya TI, Akindele SO. Marketability and nutritional qualities of some edible forest insects in Benue State, Nigeria. Pakistan J Nutr. 2009;8:917–22.

    Article  Google Scholar 

  27. Banjo AD, Lawal OA, Songonuga EA. The nutritional value of fourteen species of edible insects in southwestern Nigeria. Afric J Biotechnol. 2006;5(3):298–301.

    CAS  Google Scholar 

  28. Sailo S, Bhagawati S, Sarmah SBK, Pathak K. Nutritional and antinutritional properties of few common edible insect species of Assam. J Entomol Zool Stud. 2020;8(2):1785–91.

    Google Scholar 

  29. Melo-Ruíz V, Quirino-Barreda T, Macín-Cabrera S, Sánchez-Herrera K, Díaz-García R, Gazga-Urioste C. Nutraceutical effect of cuetlas (Arsenuraarmida C.) edible insects as local food at Ixcaquixtla. Mexico J Agric Sci Technol. 2016;6(6):423–8.

    Google Scholar 

  30. Longvah T, Mangthya K, Ramulu P. Nutrient composition and protein quality evaluation of eri silkworm (Samiaricinii) prepupae and pupae. Food Chem. 2011;128(2):400–3.

    Article  CAS  PubMed  Google Scholar 

  31. Yi L, Lakemond CM, Sagis LM, Eisner-Schadler V, Van Huis A, Van Boekel MA. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013;141(4):3341–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kinyuru JN, Kenji GM, Muhoho SN, Ayieko M. Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya district, Kenya. J Agric Sci Technol. 2010;12(1):32–46.

  33. Chakravorty J, Ghosh S, Megu K, Jung C, Meyer-Rochow VB. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): two preferred edible insects of Arunachal Pradesh, India. J Asia-Pacific Entomol. 2016;19:711–20.

    Article  Google Scholar 

  34. Paoletti MG. Ecological implication of mini livestock. Role of rodents, frogs, snails, and insects for sustainable development. Enfield: Science Publisher; 2005. p. 608.

    Google Scholar 

  35. Ramos-Elorduy J, Moreno JMP, Prado EE, Perez MA, Otero JL, De Guevara OL. Nutritional value of edible insects from the state of Oaxaca. Mexico J Food Comp Anal. 1997;10(2):142–57.

    Article  CAS  Google Scholar 

  36. Ekpo KE, Onigbinde AO. Nutritional potentials of the larva of Rhynchophorus phoenicis (F). Pakistan J Nutr. 2005;4(5):287–90.

    Article  Google Scholar 

  37. Ghosh S, Sohn HY, Pyo SJ, Jensen AB, Meyer-Rochow VB, Jung C. Nutritional composition of Apis mellifera drones from Korea and Denmark as a potential sustainable alternative food source: Comparison between developmental stages. Foods. 2020;9(4):389.

    Article  CAS  PubMed Central  Google Scholar 

  38. Tzompa-Sosa DA, Yi L, van Valenberg HJ, van Boekel MA, Lakemond CM. Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Res Int. 2014;62:1087–94.

    Article  CAS  Google Scholar 

  39. Bukkens SG. The nutritional value of edible insects. Ecol Food Nutr. 1997;36(2–4):287–319.

    Article  Google Scholar 

  40. Dey S, Paul D. Nutritive value of wild edible insects of Meghalaya (Doctoral dissertation). 2019.

  41. Rai AK, Bhaskar N, Baskaran V. Bioefficacy of EPA-DHA from lipids recovered from fish processing wastes through biotechnological approaches. Food Chem. 2013;136:80–6.

    Article  CAS  PubMed  Google Scholar 

  42. Igwe CU, Ujowundu CO, Nwaogu LA, Okwu GN. Chemical analysis of an edible African termite Macrotermes nigeriensis, a potential antidote to food security problem. Biochem Anal Biochem. 2011;1(105):2161–1009.

    Google Scholar 

  43. Ekpo KE, Onigbinde AO, Asia IO. Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. African J Pharm Pharmacol. 2009;3(2):051–7.

    CAS  Google Scholar 

  44. Ande AT. The lipid profile of the pallid emperor moth Cirina forda Westwood (Lepidoptera: Saturniidae) caterpillar. Biokemistri. 2003;13(1):37–41.

    Google Scholar 

  45. Michaelsen KF, Hoppe C, Roos N, Kaestel P, Stougaard M, Lauritzen L, et al. Choice of foods and ingredients for moderately malnourished children 6 months to 5 years of age. Food Nutr Bull. 2009;30:S343–404.

    Article  PubMed  Google Scholar 

  46. Akullo J, Agea JG, Obaa BB, Okwee-Acai J, Nakimbugwe D. Nutrient composition of commonly consumed edible insects in the Lango sub-region of northern Uganda. Int Food Res J. 2018;25(1):159–66.

    CAS  Google Scholar 

  47. Finke MD. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol Affi Am Zoo Aquar Assoc. 2002;21(3):269–85.

    CAS  Google Scholar 

  48. Shantibala T, Lokeshwari RK, Debaraj H. Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. J Ins Sci. 2014;4(1):14.

    Google Scholar 

  49. Ifie I, Emeruwa CH. Nutritional and anti-nutritional characteristics of the larva of Oryctes monoceros. Agric Biol J N Am. 2011;2(1):42–6.

    Article  CAS  Google Scholar 

  50. Siulapwa N, Mwambungu A, Lungu E, Sichilima W. Nutritional value of four common edible insects in Zambia. Inter J Sci Res. 2014;3(6):876–84.

    Google Scholar 

  51. Alamu OT, Amao AO, Nwokedi CI, Oke OA, Lawa IO. Diversity and nutritional status of edible insects in Nigeria: a review. Int J Biodivers Conserv. 2013;5(4):215–22.

    Google Scholar 

  52. Chakravorty J, Ghosh S, Meyer-Rochow VB. Chemical composition of Aspongopus nepalensis Westwood 1837 (Hemiptera; Pentatomidae), a common food insect of tribal people in Arunachal Pradesh (India). Int J Vitam Nutr Res. 2011;81(1):1–14.

    Article  Google Scholar 

  53. Chourasia R, Phukon LC, Singh SP, Rai AK, Sahoo D. Role of enzymatic bioprocesses for the production of functional food and nutraceuticals. In: Singh SP, Singhania RR, Li Z, Pandey A, Larroche C, editors. Biomass, biofuels, biochemicals. Amsterdam: Elsevier; 2020. p. 309–34.

    Chapter  Google Scholar 

  54. Purschke B, Meinlschmidt P, Horn C, Rieder O, Jäger H. Improvement of techno-functional properties of edible insect protein from migratory locust by enzymatic hydrolysis. Eur Food Res Technol. 2018;244(6):999–1013.

    Article  CAS  Google Scholar 

  55. Sousa P, Borges S, Pintado M. Enzymatic hydrolysis of insect Alphitobiusdiaperinus towards the development of bioactive peptide hydrolysates. Food Func. 2020;11(4):3539–48.

    Article  CAS  Google Scholar 

  56. Hall FG, Jones OG, O’Haire ME, Liceaga AM. Functional properties of tropical banded cricket (Gryllodessigillatus) protein hydrolysates. Food Chem. 2017;224:414–22.

    Article  CAS  PubMed  Google Scholar 

  57. Vercruysse L, Smagghe G, Beckers T, Van Camp J. Antioxidative and ACE inhibitory activities in enzymatic hydrolysates of the cotton leafworm, Spodoptera littoralis. Food Chem. 2009;114(1):38–43.

    Article  CAS  Google Scholar 

  58. Nongonierma AB, Fitz Gerald RJ. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: a review. Innov Food Sci Emerg Technol. 2017;43:239–52.

    Article  CAS  Google Scholar 

  59. Yang R, Zhao X, Kuang Z, Ye M, Luo G, Xiao G, Liao S, Li L, Xiong Z. Optimization of antioxidant peptide production in the hydrolysis of silkworm (Bombyx mori L.) pupa protein using response surface methodology. J Food Agric Environ. 2013;11:952–6.

    CAS  Google Scholar 

  60. Sanjukta S, Rai AK. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci Technol. 2016;50:1–10.

    Article  CAS  Google Scholar 

  61. Padhi S, Sanjukta S, Chourasia R, Labala RK, Singh SP, Rai AK. A multifunctional peptide From Bacillus fermented soybean for efective inhibition of SARS-CoV-2 S1 receptor binding domain and modulation of toll like receptor 4: a molecular docking study. Front Mol Biosci. 2021;8:636647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sánchez A, Vázquez A. Bioactive peptides: a review. Food Qual Saf. 2017;1(1):29–46.

    Article  Google Scholar 

  63. de Castro RJS, Ohara A, dos Santos Aguilar JG, Domingues MAF. Nutritional, functional and biological properties of insect proteins: processes for obtaining, consumption and future challenges. Trends Food Sci Technol. 2018;76:82–9.

    Article  Google Scholar 

  64. Wu Q, Jia J, Yan H, Du J, Gui Z. A novel angiotensin-I converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: biochemical characterization and molecular docking study. Peptides. 2015;68:17–24.

    Article  CAS  PubMed  Google Scholar 

  65. Rai AK, Sanjukta S, Jeyaram K. Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Crit Rev Food Sci Nutr. 2017;57:2789–800.

    Article  CAS  PubMed  Google Scholar 

  66. Zielińska E, Baraniak B, Karaś M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients. 2017;9(9):970.

    Article  PubMed Central  Google Scholar 

  67. Zielińska E, Karaś M, Baraniak B, Jakubczyk A. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur Food Res Technol. 2020;246(7):1361–9.

    Article  Google Scholar 

  68. Hall F, Liceaga A. Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. J Funct Foods. 2020;64:103634.

    Article  CAS  Google Scholar 

  69. Staljanssens D, Van Camp J, Herregods G, Dhaenens M, Deforce D, Van de Voorde J, Smagghe G. Anti-hypertensive effect of insect cells: in vitro and in vivo evaluation. Peptides. 2011;32(3):526–30.

    Article  CAS  PubMed  Google Scholar 

  70. Kumar D, Dev P, Kumar RV. Biomedical applications of silkworm pupae proteins. In: Biomedical applications of natural proteins. New Delhi: Springer; 2015. p. 41–9.

    Chapter  Google Scholar 

  71. Xia L, Ng TB, Fang EF, Wong JH. Bioactive constituents of the silk worm Bombyx mori. In: Antitumor potential and other emerging medicinal properties of natural compounds. Dordrecht: Springer; 2013. p. 335–44.

    Chapter  Google Scholar 

  72. Yoon S, Wong NA, Chae M, Auh JH. Comparative characterization of protein hydrolysates from three edible insects: Mealworm larvae, adult crickets, and silkworm pupae. Foods. 2019;8(11):563.

    Article  CAS  PubMed Central  Google Scholar 

  73. Dimarcq JL, Zachary D, Hoffmann JA, Hoffmann D, Reichhart JM. Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormiaterranovae. EMBO J. 1990;9(8):2507–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hultmark D, Engström A, Andersson K, Steiner H, Bennich H, Boman HG. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophoracecropia. EMBO J. 1983;2(4):571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol. 2014;98(13):5807–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Slocinska M, Marciniak P, Rosinski G. Insects antiviral and anticancer peptides: new leads for the future? Protein Pept Lett. 2008;15(6):578–85.

    Article  CAS  PubMed  Google Scholar 

  77. Islam SJ, Bezbaruah S, Kalita J. A review on antimicrobial peptides from Bombyx mori L. and their application in plant and animal disease control. J Adv Biol Biotechnol. 2016;9:1–15.

    Article  Google Scholar 

  78. Qu XM, Steiner H, Engström A, Bennich H, Boman HG. Insect immunity: isolation and structure of cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi. Eur J Biochem. 1982;127(1):219–24.

    Article  CAS  PubMed  Google Scholar 

  79. Kumari R, Sanjukta S, Sahoo D, Rai AK. Functional peptides in Asian protein rich fermented foods: production and health benefits. Syst Microbiol Bioman. 2022;2:1–13.

    Article  CAS  Google Scholar 

  80. Kusumoto KI, Rai AK. Miso, the traditional fermented soybean paste in Japan. In: Ray RC, Montet D, editors. Fermented foods: part II: technological interventions. CRC; 2017. p. 122–34.

  81. Adebo OA, Gabriela Medina-Meza I. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: a mini review. Molecules. 2020;25(4):927.

    Article  CAS  PubMed Central  Google Scholar 

  82. Adebo OA. African sorghum-based fermented foods: past, current and future prospects. Nutrients. 2020;12(4):1111.

    Article  CAS  PubMed Central  Google Scholar 

  83. Sanjukta S, Rai AK, Sahoo D. Bioactive metabolites in fermented soybean products and their potential health benefits. In: Ray RC, Montet D, editors. Fermented foods: part II: technological interventions. Boca Raton: CRC Press; 2017. p. 97–121.

    Google Scholar 

  84. Klunder HC, Wolkers-Rooijackers J, Korpela JM, Nout MJR. Microbiological aspects of processing and storage of edible insects. Food Control. 2012;26(2):628–31.

    Article  Google Scholar 

  85. de Oliveira LM, da Silva Lucas AJ, Cadaval CL, Mellado MS. Bread enriched with flour from cinereous cockroach (Nauphoeta cinerea). Innov Food Sci Emerg Technol. 2017;44:30–5.

    Article  Google Scholar 

  86. Cho JH, Zhao HL, Kim JS, Kim SH, Chung CH. Characteristics of fermented seasoning sauces using Tenebrio molitor larvae. Innov Food Sci Emerg Technol. 2018;45:186–95.

    Article  CAS  Google Scholar 

  87. Osimani A, Milanović V, Cardinali F, Roncolini A, Garofalo C, Clementi F, Pasquini M, Mozzon M, Foligni R, Raffaelli N, Zamporlini F. Bread enriched with cricket powder (Acheta domesticus): a technological, microbiological and nutritive evaluation. Innov Food Sci Emerg Technol. 2018;48:150–63.

    Article  CAS  Google Scholar 

  88. Cho HD, Min HJ, Won YS, Ahn HY, Cho YS, Seo KI. Solid state fermentation process with Aspergillus kawachii enhances the cancer-suppressive potential of silkworm larva in hepatocellular carcinoma cells. BMC Complement Altern Med. 2019;19(1):1–15.

    Article  Google Scholar 

  89. Roncolini A, Milanović V, Cardinali F, Osimani A, Garofalo C, Sabbatini R, Clementi F, Pasquini M, Mozzon M, Foligni R, Raffaelli N. Protein fortification with mealworm (Tenebrio molitor L.) powder: effect on textural, microbiological, nutritional and sensory features of bread. PLoS ONE. 2019;14(2):e0211747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haber M, Mishyna M, Martinez JI, Benjamin O. The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT Food Sci Technol. 2019;115:108395.

    Article  CAS  Google Scholar 

  91. Mouritsen OG, Duelund L, Calleja G, Frøst MB. Flavour of fermented fish, insect, game, and pea sauces: Garum revisited. Int J Gastron Food Sci. 2017;9:16–28.

    Article  Google Scholar 

  92. Borremans A, Lenaerts S, Crauwels S, Lievens B, Van Campenhout L. Marination and fermentation of yellow meal worm larvae (Tenebrio molitor). Food Control. 2018;92:47–52.

    Article  CAS  Google Scholar 

  93. De Smet J, Lenaerts S, Borremans A, Scholliers J, Van Der Borght M, Van Campenhout L. Stability assessment and laboratory scale fermentation of pastes produced on a pilot scale from mealworms (Tenebrio molitor). LWT Food Sci Technol. 2019;102:113–21.

    Article  Google Scholar 

  94. Kewuyemi YO, Kesa H, Chinma CE, Adebo OA. Fermented edible insects for promoting food security in Africa. Insects. 2020;11(5):283.

    Article  PubMed Central  Google Scholar 

  95. da Rosa MC, Thys RCS. Cricket powder (Gryllusassimilis) as a new alternative protein source for gluten-free breads. Innov Food Sci Emerg Technol. 2019;56:102180.

    Article  Google Scholar 

Download references

Funding

The authors wish to thank the Director, Institute of Bioresources and Sustainable Development, Manipur, India for his keen interest in this study. The authors acknowledge Department of Biotechnology, Govt. of India, grant No. BT/01/17/NE/TAX for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yallappa Rajashekar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, W.D., Bonysana, R., Kapesa, K. et al. Potential of edible insects as source of functional foods: biotechnological approaches for improving functionality. Syst Microbiol and Biomanuf 2, 461–472 (2022). https://doi.org/10.1007/s43393-022-00089-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00089-5

Keywords

Navigation