Skip to main content

Advertisement

Log in

Influence of gut microbiome on the human physiology

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Trillions of microbes harbor the gastrointestinal tract and co-exist peacefully with the human host. Microbial diversity and composition among individuals depend upon human age, diet, and environmental factors. The dynamic population of the gut microbiome, majorly consisting of Bacteroidetes and Firmicutes, forms a complex ecological community. The collective metabolic activities and interaction of gut microbiota with the host exert a marked influence on human physiology. The gut microbiota help to perform various functions, such as maintenance of intestinal mucosal integrity, production of anti-microbial peptides, protection against foreign invaders, and immunity development. In addition, they also provide essential nutrients, such as enzymes and vitamins, and also take part in metabolite synthesis, which influences both cognitive and behavioral functions of the human host. Homeostatic equilibrium among gut microorganisms, and between the microbes and intestinal interface of the host allows the maintenance of beneficial microbiota. Any alteration or dysbiosis in gut microbial composition, due to a sedentary lifestyle or intake of an unbalanced diet, plays a crucial role in the development of diseases like systemic inflammation, insulin resistance, auto-immune and metabolic disorders. This review summarizes our current understanding of the gut microbial organization, its importance in the fundamental biological processes and the pathogenesis of various human diseases and infections, and also the prognostic, diagnostic, and therapeutic potential of the gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–36. https://doi.org/10.1042/BCJ20160510.

    Article  CAS  PubMed  Google Scholar 

  2. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65–80.

    Article  PubMed  Google Scholar 

  3. Wang B, Yao M, Lv L, et al. The human microbiota in health and disease. Engineering. 2017;3:71–82. https://doi.org/10.1016/J.ENG.2017.01.008.

    Article  Google Scholar 

  4. Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015. https://doi.org/10.3402/mehd.v26.26050.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Poretsky R, Rodriguez-R LM, Luo C, et al. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE. 2014;9: e93827. https://doi.org/10.1371/journal.pone.0093827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999;65:4799–807. https://doi.org/10.1128/aem.65.11.4799-4807.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS ONE. 2013;8: e53608. https://doi.org/10.1371/journal.pone.0053608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lozupone CA, Stombaugh J, Gonzalez A, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704–14. https://doi.org/10.1101/gr.151803.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nagpal R, Kumar M, Yadav AK, et al. Gut microbiota in health and disease: an overview focused on metabolic inflammation. Benef Microbes. 2016;7:181–94.

    Article  CAS  PubMed  Google Scholar 

  10. Pushpanathan P, Mathew GS, Selvarajan S, et al. Gut microbiota and its mysteries. Indian J Med Microbiol. 2019;37:268–77. https://doi.org/10.4103/ijmm.IJMM_19_373.

    Article  PubMed  Google Scholar 

  11. Sekirov I, Russell SL, Caetano M, Antunes L, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  12. Macfarlane S, Bahrami B, Macfarlane GT. Mucosal biofilm communities in the human intestinal tract. In: Advances in applied microbiology. Academic Press Inc; 2011. p. 111–43.

    Chapter  Google Scholar 

  13. Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352:539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aagaard K, Riehle K, Ma J, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE. 2012;7: e36466. https://doi.org/10.1371/JOURNAL.PONE.0036466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salminen S, Gibson GR, McCartney AL, Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004;53:1388–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Avershina E, Storrø O, Øien T, et al. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiol Ecol. 2014;87:280–90. https://doi.org/10.1111/1574-6941.12223.

    Article  CAS  PubMed  Google Scholar 

  18. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014;63:559–66. https://doi.org/10.1136/gutjnl-2012-303249.

    Article  CAS  PubMed  Google Scholar 

  19. Eckburg PB, Bik EM, Bernstein CN, et al. Microbiology: diversity of the human intestinal microbial flora. Science. 2005;308:1635–8. https://doi.org/10.1126/science.1110591.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Muegge BD, Kuczynski J, Knights D, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4. https://doi.org/10.1126/science.1198719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14. https://doi.org/10.1038/nature11234.

    Article  CAS  Google Scholar 

  23. Ke N, Gm W, Sk H, et al. A catalog of reference genomes from the human microbiome. Science. 2010;328:994–9. https://doi.org/10.1126/SCIENCE.1183605.

    Article  Google Scholar 

  24. Verberkmoes NC, Russell AL, Shah M, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3:179–89. https://doi.org/10.1038/ismej.2008.108.

    Article  CAS  PubMed  Google Scholar 

  25. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975. https://doi.org/10.1016/0022-2836(75)90213-2.

    Article  PubMed  Google Scholar 

  26. Ji B, Nielsen J. From next-generation sequencing to systematic modeling of the gut microbiome. Front Genet. 2015. https://doi.org/10.3389/FGENE.2015.00219.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402. https://doi.org/10.1146/ANNUREV.GENOM.9.081307.164359.

    Article  CAS  PubMed  Google Scholar 

  28. Ronaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Res. 2001;11:3–11. https://doi.org/10.1101/GR.150601.

    Article  CAS  PubMed  Google Scholar 

  29. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;4907418(490):55–60. https://doi.org/10.1038/nature11450.

    Article  CAS  Google Scholar 

  30. Baümler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535:85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Natividad JMM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res. 2013;69:42–51.

    Article  CAS  PubMed  Google Scholar 

  32. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2015;14:20–32.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:1556–73. https://doi.org/10.1371/journal.pbio.0050177.

    Article  CAS  Google Scholar 

  34. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108:4578–85. https://doi.org/10.1073/pnas.1000081107.

    Article  PubMed  Google Scholar 

  35. Kozyrskyj AL, Bahreinian S, Azad MB. Early life exposures: impact on asthma and allergic disease. Curr Opin Allergy Clin Immunol. 2011;11:400–6.

    Article  CAS  PubMed  Google Scholar 

  36. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5. https://doi.org/10.1073/pnas.1002601107.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dicksved J, Halfvarson J, Rosenquist M, et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J. 2008;2:716–27. https://doi.org/10.1038/ismej.2008.37.

    Article  CAS  PubMed  Google Scholar 

  38. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6. https://doi.org/10.1073/pnas.1005963107.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kovatcheva-Datchary P, Nilsson A, Akrami R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22:971–82. https://doi.org/10.1016/j.cmet.2015.10.001.

    Article  CAS  PubMed  Google Scholar 

  40. Cazarin CBB, Rodriguez-Nogales A, Algieri F, et al. Intestinal anti-inflammatory effects of Passiflora edulis peel in the dextran sodium sulphate model of mouse colitis. J Funct Foods. 2016;26:565–76. https://doi.org/10.1016/j.jff.2016.08.020.

    Article  CAS  Google Scholar 

  41. Danneskiold-Samsøe NB, de Freitas D, Barros HQ, Santos R, et al. Interplay between food and gut microbiota in health and disease. Food Res Int. 2019;115:23–31.

    Article  PubMed  Google Scholar 

  42. Chassard C, Lacroix C. Carbohydrates and the human gut microbiota. Curr Opin Clin Nutr Metab Care. 2013;16:453–60.

    Article  CAS  PubMed  Google Scholar 

  43. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016. https://doi.org/10.1136/gutjnl-2015-309957.

    Article  PubMed  Google Scholar 

  44. Cockburn DW, Koropatkin NM. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol. 2016;428:3230–52.

    Article  CAS  PubMed  Google Scholar 

  45. Leth ML, Ejby M, Workman C, et al. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nat Microbiol. 2018;3:570–80. https://doi.org/10.1038/s41564-018-0132-8.

    Article  CAS  PubMed  Google Scholar 

  46. Reichardt N, Vollmer M, Holtrop G, et al. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J. 2018;12:610–22. https://doi.org/10.1038/ismej.2017.196.

    Article  CAS  PubMed  Google Scholar 

  47. El KA, Armougom F, Gordon JI, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol. 2013;11:497–504. https://doi.org/10.1038/nrmicro3050.

    Article  CAS  Google Scholar 

  48. Liisberg U, Myrmel LS, Fjære E, et al. The protein source determines the potential of high protein diets to attenuate obesity development in C57BL/6J mice. Adipocyte. 2016;5:196–211. https://doi.org/10.1080/21623945.2015.1122855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Malik VS, Li Y, Tobias DK, et al. Dietary protein intake and risk of type 2 diabetes in US men and women. Am J Epidemiol. 2016;183:715–28. https://doi.org/10.1093/aje/kwv268.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85. https://doi.org/10.1038/nm.3145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tang WHW, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84. https://doi.org/10.1056/nejmoa1109400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tranberg B, Madsen AN, Hansen AK, Hellgren LI. Whey-reduced weight gain is associated with a temporary growth reduction in young mice fed a high-fat diet. J Nutr Biochem. 2015;26:9–15. https://doi.org/10.1016/j.jnutbio.2014.07.009.

    Article  CAS  PubMed  Google Scholar 

  53. McAllan L, Speakman JR, Cryan JF, Nilaweera KN. Whey protein isolate decreases murine stomach weight and intestinal length and alters the expression of Wnt signalling-associated genes. Br J Nutr. 2015;113:372–9. https://doi.org/10.1017/S0007114514004024.

    Article  CAS  PubMed  Google Scholar 

  54. Cho CE, Taesuwan S, Malysheva OV, et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res. 2017. https://doi.org/10.1002/mnfr.201600324.

    Article  PubMed  Google Scholar 

  55. Dumas ME, Rothwell AR, Hoyles L, et al. Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep. 2017;20:136–48. https://doi.org/10.1016/j.celrep.2017.06.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Holm JB, Rønnevik A, Tastesen HS, et al. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures. J Nutr Biochem. 2016;31:127–36. https://doi.org/10.1016/j.jnutbio.2015.12.017.

    Article  CAS  PubMed  Google Scholar 

  57. Yang Z, Huang S, Zou D, et al. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids. 2016;48:2731–45. https://doi.org/10.1007/s00726-016-2308-y.

    Article  CAS  PubMed  Google Scholar 

  58. Li Z, Jin H, Oh SY, Ji GE. Anti-obese effects of two Lactobacilli and two Bifidobacteria on ICR mice fed on a high fat diet. Biochem Biophys Res Commun. 2016;480:222–7. https://doi.org/10.1016/j.bbrc.2016.10.031.

    Article  CAS  PubMed  Google Scholar 

  59. Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63:727–35. https://doi.org/10.1136/gutjnl-2012-303839.

    Article  CAS  PubMed  Google Scholar 

  60. Xiao L, Sonne SB, Feng Q, et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome. 2017;5:43. https://doi.org/10.1186/S40168-017-0258-6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eaton SB, Eaton SB, Konner MJ, Shostak M. An evolutionary perspective enhances understanding of human nutritional requirements. J Nutr. 1996;126:1732–40.

    Article  CAS  PubMed  Google Scholar 

  62. Li H, Zhu Y, Zhao F, et al. Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/s41598-017-00969-0.

    Article  CAS  Google Scholar 

  63. Caesar R, Tremaroli V, Kovatcheva-Datchary P, et al. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22:658–68. https://doi.org/10.1016/j.cmet.2015.07.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robertson RC, Oriach CS, Murphy K, et al. Deficiency of essential dietary n-3 PUFA disrupts the caecal microbiome and metabolome in mice. Br J Nutr. 2017;118:959–70. https://doi.org/10.1017/S0007114517002999.

    Article  CAS  PubMed  Google Scholar 

  65. Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491–502.

    Article  PubMed  Google Scholar 

  66. Di Renzo L, Gualtieri P, Pivari F, et al. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med. 2020;18:229. https://doi.org/10.1186/s12967-020-02399-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54:562–72. https://doi.org/10.1002/hep.24423.

    Article  PubMed  Google Scholar 

  68. Daguet D, Pinheiro I, Verhelst A, et al. Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the simulator of the human intestinal microbial ecosystem. J Funct Foods. 2016;20:369–79. https://doi.org/10.1016/j.jff.2015.11.005.

    Article  CAS  Google Scholar 

  69. Vandenplas Y, Zakharova I, Dmitrieva Y. Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Br J Nutr. 2015;113:1339–44.

    Article  CAS  PubMed  Google Scholar 

  70. Santhakumar AB, Battino M, Alvarez-Suarez JM. Dietary polyphenols: structures, bioavailability and protective effects against atherosclerosis. Food Chem Toxicol. 2018;113:49–65.

    Article  CAS  PubMed  Google Scholar 

  71. Thomas S, Izard J, Walsh E, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res. 2017;77:1783–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun H, Chen Y, Cheng M, et al. The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. J Food Sci Technol. 2018;55:399–407. https://doi.org/10.1007/s13197-017-2951-7.

    Article  CAS  PubMed  Google Scholar 

  73. Kho ZY, Lal SK. The human gut microbiome—a potential controller of wellness and disease. Front Microbiol. 2018;9:1835.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mardinoglu A, Boren J, Smith U. Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab. 2016;23:10–2.

    Article  CAS  PubMed  Google Scholar 

  75. Rothwell JA, Perez-Jimenez J, Neveu V, et al. Phenol-explorer 3.0: a major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database. 2013. https://doi.org/10.1093/database/bat070.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kelsen JR, Wu GD. The gut microbiota, environment and diseases of modern society. Gut Microbes. 2012;3:374. https://doi.org/10.4161/GMIC.21333.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Redondo-Useros N, Nova E, González-Zancada N, et al. Microbiota and lifestyle: a special focus on diet. Nutrients. 2020;12:1–54. https://doi.org/10.3390/NU12061776.

    Article  Google Scholar 

  78. Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299:1259–60. https://doi.org/10.1136/BMJ.299.6710.1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Azad MB, Konya T, Persaud RR, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG-Int J Obstet Gy. 2016;123:983–93. https://doi.org/10.1111/1471-0528.13601.

    Article  CAS  Google Scholar 

  80. Bhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ. Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother. 2019;74:I6–15. https://doi.org/10.1093/JAC/DKY530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chong CYL, Bloomfield FH, O’Sullivan JM. Factors affecting gastrointestinal microbiome development in neonates. Nutrients. 2018. https://doi.org/10.3390/NU10030274.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Stinson LF, Payne MS, Keelan JA. A critical review of the bacterial baptism hypothesis and the impact of cesarean delivery on the infant microbiome. Front Med. 2018. https://doi.org/10.3389/FMED.2018.00135.

    Article  Google Scholar 

  83. Corrêa-Oliveira R, Fachi JL, Vieira A, et al. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5:e73.

    Article  Google Scholar 

  84. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41.

    Article  CAS  PubMed  Google Scholar 

  85. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190–5. https://doi.org/10.1038/oby.2009.167.

    Article  PubMed  Google Scholar 

  87. LeBlanc JG, Milani C, de Giori GS, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–8.

    Article  CAS  PubMed  Google Scholar 

  88. Martens JH, Barg H, Warren M, Jahn D. Microbial production of vitamin B12. Appl Microbiol Biotechnol. 2002;58:275–85.

    Article  CAS  PubMed  Google Scholar 

  89. Pompei A, Cordisco L, Amaretti A, et al. Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol. 2007;73:179–85. https://doi.org/10.1128/AEM.01763-06.

    Article  CAS  PubMed  Google Scholar 

  90. Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101:47–64.

    Article  CAS  PubMed  Google Scholar 

  91. Melli LCFL, do Carmo-Rodrigues MS, Araújo-Filho HB, et al. Intestinal microbiota and allergic diseases: a systematic review. Allergol Immunopathol (Madr). 2016;44:177–88.

    Article  CAS  Google Scholar 

  92. Tomova A, Bukovsky I, Rembert E, et al. The effects of vegetarian and vegan diets on gut microbiota. Front Nutr. 2019;6:47.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Parfrey LW, Walters WA, Lauber CL, et al. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Front Microbiol. 2014;5:1–13. https://doi.org/10.3389/fmicb.2014.00298.

    Article  Google Scholar 

  94. Ipci K, Altıntoprak N, Muluk NB, et al. The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol. 2017;274:617–26.

    Article  PubMed  Google Scholar 

  95. Mackowiak PA. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Health. 2013. https://doi.org/10.3389/fpubh.2013.00052.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Myers SP, Hawrelak JA. The causes of intestinal dysbiosis: a review. Altern Med Rev. 2004;9:180–97.

    PubMed  Google Scholar 

  97. Young VB, Schmidt TM. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol. 2004;42:1203–6. https://doi.org/10.1128/JCM.42.3.1203-1206.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ju YC, Antonopoulos DA, Kalra A, et al. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis. 2008;197:435–8. https://doi.org/10.1086/525047.

    Article  Google Scholar 

  99. Carroll IM, Ringel-Kulka T, Keku TO, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2011. https://doi.org/10.1152/ajpgi.00154.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Jones R. Chronic disease and comorbidity. Br J Gen Pract. 2010;60:399.

    Google Scholar 

  101. Chmiel R, Beyerlein A, Knopff A, et al. Early infant feeding and risk of developing islet autoimmunity and type 1 diabetes. Acta Diabetol. 2015;52:621–4. https://doi.org/10.1007/s00592-014-0628-5.

    Article  CAS  PubMed  Google Scholar 

  102. Kuang YS, Lu JH, Li SH, et al. Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience. 2017;6:1–12. https://doi.org/10.1093/gigascience/gix058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang J, Qin J, Li Y, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60. https://doi.org/10.1038/nature11450.

    Article  CAS  PubMed  Google Scholar 

  104. Cesaro C, Tiso A, Del Prete A, et al. Gut microbiota and probiotics in chronic liver diseases. Dig Liver Dis. 2011;43:431–8.

    Article  PubMed  Google Scholar 

  105. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3. https://doi.org/10.1038/4441022a.

    Article  CAS  PubMed  Google Scholar 

  106. Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070–5. https://doi.org/10.1073/pnas.0504978102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Riiser A. The human microbiome, asthma, and allergy. Allergy Asthma Clin Immunol. 2015;11:35.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6. https://doi.org/10.1038/nature12506.

    Article  CAS  PubMed  Google Scholar 

  109. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  110. Leone V, Gibbons SM, Martinez K, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17:681–9. https://doi.org/10.1016/j.chom.2015.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4. https://doi.org/10.1038/nature07540.

    Article  CAS  PubMed  Google Scholar 

  112. Ismail NA, Ragab SH, ElBaky AA, et al. Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch Med Sci. 2011;7:501–7. https://doi.org/10.5114/aoms.2011.23418.

    Article  CAS  Google Scholar 

  113. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81. https://doi.org/10.1038/nature18646.

    Article  CAS  PubMed  Google Scholar 

  114. Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685–93. https://doi.org/10.1136/gut.2003.025403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9. https://doi.org/10.1172/jci25102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hammer HF. Gut microbiota and inflammatory bowel disease. Dig Dis. 2011;29:550–3. https://doi.org/10.1159/000332981.

    Article  PubMed  Google Scholar 

  117. Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Mol Metab. 2016;5:771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ogunrinola GA, Oyewale JO, Oshamika OO, Olasehinde GI. The human microbiome and its impacts on health. Int J Microbiol. 2020. https://doi.org/10.1155/2020/8045646.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64. https://doi.org/10.1038/nature13568.

    Article  CAS  PubMed  Google Scholar 

  120. Betrapally NS, Gillevet PM, Bajaj JS. Changes in the intestinal microbiome and alcoholic and nonalcoholic liver diseases: causes or effects? Gastroenterology. 2016;150:1745-1755.e3. https://doi.org/10.1053/j.gastro.2016.02.073.

    Article  PubMed  Google Scholar 

  121. Wang B, Jiang X, Cao M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep. 2016. https://doi.org/10.1038/srep32002.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14. https://doi.org/10.1186/s40168-016-0222-x.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Marasco G, Di Biase AR, Schiumerini R, et al. Gut microbiota and celiac disease. Dig Dis Sci. 2016;61:1461–72.

    Article  CAS  PubMed  Google Scholar 

  124. Rossi M, Schwartz KB. Editorial: celiac disease and intestinal bacteria: not only gluten? J Leukoc Biol. 2010;87:749–51. https://doi.org/10.1189/jlb.1209784.

    Article  CAS  PubMed  Google Scholar 

  125. Toivanen P. Normal intestinal microbiota in the aetiopathogenesis of rheumatoid arthritis. Ann Rheum Dis. 2003;62:807–11. https://doi.org/10.1136/ard.62.9.807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Moreno-Arrones OM, Serrano-Villar S, Perez-Brocal V, et al. Analysis of the gut microbiota in alopecia areata: identification of bacterial biomarkers. J Eur Acad Dermatol Venereol. 2020;34:400–5. https://doi.org/10.1111/jdv.15885.

    Article  CAS  PubMed  Google Scholar 

  127. De Sablet T, Piazuelo MB, Shaffer CL, et al. Phylogeographic origin of Helicobacter pylori is a determinant of gastric cancer risk. Gut. 2011;60:1189–95. https://doi.org/10.1136/gut.2010.234468.

    Article  CAS  PubMed  Google Scholar 

  128. De Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13:607–15. https://doi.org/10.1016/S1470-2045(12)70137-7.

    Article  PubMed  Google Scholar 

  129. Sanapareddy N, Legge RM, Jovov B, et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J. 2012;6:1858–68. https://doi.org/10.1038/ismej.2012.43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Keku TO, McCoy AN, Azcarate-Peril AM. Fusobacterium spp. and colorectal cancer: cause or consequence? Trends Microbiol. 2013;21:506–8.

    Article  CAS  PubMed  Google Scholar 

  131. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306. https://doi.org/10.1101/gr.126516.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Clausen MR, Bonnén H, Mortensen PB. Colonic fermentation of dietary fibre to short chain fatty acids in patients with adenomatous polyps and colonic cancer. Gut. 1991;32:923–8. https://doi.org/10.1136/gut.32.8.923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Howe GR, Benito E, Castelleto R, et al. Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies. J Natl Cancer Inst. 1992;84:1887–96. https://doi.org/10.1093/jnci/84.24.1887.

    Article  CAS  PubMed  Google Scholar 

  134. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41. https://doi.org/10.1126/science.1198469.

    Article  CAS  PubMed  Google Scholar 

  135. Franzosa EA, Morgan XC, Segata N, et al. Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci USA. 2014. https://doi.org/10.1073/pnas.1319284111.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gosalbes MJ, Durbán A, Pignatelli M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS ONE. 2011;6: e17447. https://doi.org/10.1371/journal.pone.0017447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Arnold JW, Roach J, Azcarate-Peril MA. Emerging technologies for gut microbiome research. Trends Microbiol. 2016;24:887–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nichols D, Cahoon N, Trakhtenberg EM, et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol. 2010;76:2445–50. https://doi.org/10.1128/AEM.01754-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol. 2002;68:3878–85. https://doi.org/10.1128/AEM.68.8.3878-3885.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12:2165–74. https://doi.org/10.1039/c2lc40074j.

    Article  CAS  PubMed  Google Scholar 

  141. Wang Y, Ahmad AA, Sims CE, et al. In vitro generation of colonic epithelium from primary cells guided by microstructures. Lab Chip. 2014;14:1622–31. https://doi.org/10.1039/c3lc51353j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rusconi R, Garren M, Stocker R. Microfluidics expanding the frontiers of microbial ecology. Annu Rev Biophys. 2014;43:65–91. https://doi.org/10.1146/annurev-biophys-051013-022916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge post-graduation fellowship provided by the Ministry of Education (MoE), Govt. of India to the first author

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumer Singh Meena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All authors agree with their participation in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Prabhakar, M.R., Mohanty, A. et al. Influence of gut microbiome on the human physiology. Syst Microbiol and Biomanuf 2, 217–231 (2022). https://doi.org/10.1007/s43393-021-00052-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00052-w

Keywords

Navigation