Skip to main content

Advertisement

Log in

Current sharing compensation control method for interleaved current source isolated bidirectional DC/DC converters

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

The isolated dual active bridge DC/DC converter is widely used in power electronic conversion systems due to its security, scalability, and easily realized soft switching. Meanwhile, interleaved technology is also widely used in high current conversion applications due to its low current ripple. Current sharing characteristics are analyzed in detail in this paper based on the topology characteristics of an interleaved low current ripple isolated DC/DC converter. At the same time, under dynamic conditions, the altering trend of the current deviation ratio and the relationship between the current deviation rate and the phase-shifted angle are revealed by small signal modeling. In addition, a single-zero double-pole compensation control method in the current loop is proposed. Finally, an experimental 670 W prototype is built to verify the correctness of the theoretical analysis and the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

source DAB

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hu, K.W., Liaw, C.M.: Incorporated operation control of DC microgrid and electric vehicle. IEEE Trans. Ind. Elec. 63(1), 202–215 (2016)

    Article  Google Scholar 

  2. Yong, J.Y., Ramachandaramurthy, V.K., Tan, K.M., Mithulananthan, N.: A review on the state-of-the-art technologies of electric vehicle its impacts and prospects. Renew. Sust. Energ. Rev. 49(1), 365–385 (2015)

    Article  Google Scholar 

  3. Doncker, R.W.A.A.D., Divan, D.M., Kheraluwala, M.H.: A three-phase soft-switched high-power-density DC/DC converter for high power applications. Proc. IEEE Trans. Ind. Appl. 27(1), 63–73 (1991)

    Article  Google Scholar 

  4. Inoue, S., Akagi, H.: A bi-directional isolated DC/DC converter as a core circuit of the next-generation medium-voltage power conversion system. In: Proceedings of 37th IEEE Power Electron Spec. Conference, pp. 1–7 (2006)

  5. Zhao, B., Yu, Q., Sun, W.: Extended-phase-shift control of isolated bidirectional DC–DC converter for power distribution in microgrid. IEEE Trans. Power Electron. 27(11), 4667–4680 (2012)

    Article  Google Scholar 

  6. Lhomme, W., et al.: Integrated traction/charge/air compression supply using three-phase split-windings motor for electric vehicles. IEEE Trans. Power Electron. 33(11), 10003–10012 (2018)

    Article  Google Scholar 

  7. Subotic, I., Bodo, E., Levi, E., Jones, M., Levi, V.: Isolated chargers for EVs incorporating six-phase machines. IEEE Trans. Ind. Electron. 63(1), 653–664 (2016)

    Article  Google Scholar 

  8. Inoue, S., Akagi, H.: A bidirectional DC–DC converter for an energy storage system with galvanic isolation. IEEE Trans. Power Electron. 22(6), 2299–2306 (2007)

    Article  Google Scholar 

  9. Mao, H., Yao, L., Wang, C., Batarseh, I.: Analysis of inductor current sharing in non-isolated and isolated multiphase DC–DC converters. IEEE Trans. Ind. Electron. 54(6), 3379–3388 (2007)

    Article  Google Scholar 

  10. Thottuvelil, V.J., Verghese, G.C.: Analysis and control design of paralleled DC–DC converters with current sharing. IEEE Trans. Power Electron. 13(4), 635–644 (1998)

    Article  Google Scholar 

  11. Panov, Y., Jovanoiv, M.M.: Stability and dynamic performance of current-sharing control for paralleled voltage regulator modules. IEEE Trans. Power Electron. 17(2), 172–179 (2002)

    Article  Google Scholar 

  12. Li, P., Lehman, B.: A design method for paralleling current mode controlled DC–DC converters. IEEE Trans. Power Electron. 19(3), 748–756 (2004)

    Article  Google Scholar 

  13. Abu-Qahouq, J., Mao, H., Batarseh, I.: Multiphase voltage-mode hysteretic controlled DC–DC converter with novel current sharing. IEEE Trans. Power Electron. 19(6), 1397–1407 (2004)

    Article  Google Scholar 

  14. Zhou, X., Xu, P., Lee, F.C.: A novel current-sharing control technique for low-voltage high-current voltage regulator module applications. IEEE Trans. Power Electron. 15(6), 1153–1162 (2000)

    Article  Google Scholar 

  15. Abu-Qahouq, J., Ma, H., Batarseh, I.: Multiphase voltage-mode hysteretic controlled DC–DC converter with novel current sharing. IEEE Trans. Power Electron. 19(6), 1397–1407 (2004)

    Article  Google Scholar 

  16. Abu-Qahouq, J.: Analysis and design of N-phase current-sharing autotuning controller. IEEE Trans. Power Electron. 25(6), 1641–1651 (2010)

    Article  Google Scholar 

  17. Kim, J.-W., Choi, H.S., Cho, B.H.: A novel droop method for converter parallel operation. IEEE Trans. Power Electron. 17(1), 25–32 (2002)

    Google Scholar 

  18. Kim, H., Falahi, M., Jahns, T.M., Degner, M.W.: Inductor current measurement and regulation using a single DC link current sensor for interleaved DC–DC converters. IEEE Trans. Power Electron. 26(5), 1503–1510 (2011)

    Article  Google Scholar 

  19. Qu, L., Zhang, D., Bao, Z., Degner, M.W.: Output current-differential control scheme for input-series–output-parallel-connected modular DC–DC converters. IEEE Trans. Power Electron. 32(7), 5699–5711 (2017)

    Article  Google Scholar 

  20. Qahouq, J., Huang, L., Huard, D.: Sensorless current sharing analysis and scheme for multiphase converters. IEEE Trans. Power Electron. 23(5), 2237–2247 (2008)

    Article  Google Scholar 

  21. Du, W., Tao, Y., Chen Z., Wang, C.: Sensorless current sharing in digitally controlled multiphase buck DC-DC converters. In: International Conference on Electrical, Control and Computer Engineering, pp. 302–307 (2011)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 51977145, and in part by the Zhejiang Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham Ningbo China (Grant No. PKLMEA20OF02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jiao, H., Yang, G. et al. Current sharing compensation control method for interleaved current source isolated bidirectional DC/DC converters. J. Power Electron. 22, 1–9 (2022). https://doi.org/10.1007/s43236-021-00334-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00334-5

Keywords

Navigation