Skip to main content

Advertisement

Log in

Floodplain evolution during the early Paleogene within the Piceance Creek Basin, northwest Colorado, U.S.A

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Characteristics of floodplain strata document local, regional, and even global paleoenvironmental conditions. In this study, we examine floodplain deposition within the early Paleogene Wasatch Formation in the Piceance Creek Basin of northwestern Colorado, U.S.A., using sedimentology, environmental magnetism, and whole-rock geochemistry with the purpose to constrain the long-term influence of boundary conditions on basin-scale depositional patterns. Overbank strata represent a spectrum of floodplain environments from organic-rich swamps and poorly drained floodplains to well-drained, oxidized paleosols that are identifiable as distinct lithofacies. For each facies, there is a high degree of coherence between pedogenic features and magnetic properties that support drainage variation as a dominant control on floodplain development. We characterize the frequency of occurrence for depositional facies through the basin by integrating three new stratigraphic sections with fluvial and geochemical records from previous studies. In addition, we present a new subsidence analysis for the Piceance Creek Basin to aid in our understanding of temporal trends. Floodplain deposition shifts from poorly drained conditions to well-drained conditions from the Paleocene to early Eocene. This difference in long-term overbank deposition between the two epochs corresponds with an increase in basin subsidence rates. Moreover, the change in floodplain deposition is mimicked in other Laramide basins within the Western Interior of the United States, which suggests a coherent regional shift and driver. This shift correlates with a major phase of Laramide tectonism linked with accelerated basin subsidence rates, increased uplift rates, and higher paleoelevations in the Rocky Mountain region. We suggest these factors, potentially along with long-term global warming trends into the Early Eocene Climatic Optimum, led to greater trapping of sediment within Laramide basins during the Eocene and depressed water tables, which were reflected in floodplain characteristics. Surprisingly, the impact of the Paleocene–Eocene Thermal Maximum, a ~ 200 kyr global warming event, did not generate distinct changes in paleosol development apart from an abbreviated increase in the prevalence of crevasse splay events. This observation is coherent with coeval fluvial lithofacies indicative of peaked river discharge and enhanced river mobility, which may imply greater rainfall variability during the hyperthermal event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data are available upon request and in supplementary material.

References

  • Abels, H. A., Kraus, M. J., & Gingerich, P. D. (2013). Precession-scale cyclicity in the fluvial lower Eocene Willwood Formation of the Bighorn Basin, Wyoming (USA). Sedimentology, 60, 1467–1483.

    Article  Google Scholar 

  • Adams, J. S., Kraus, M. J., & Wing, S. L. (2011). Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 358–366.

    Article  Google Scholar 

  • Allen, J. R. L. (1978). Studies in fluviatile sedimentation: an exploratory quantitative model for the architecture of avulsion-controlled alluvial sites. Sedimentary Geology, 21, 129–147.

    Article  Google Scholar 

  • Allen, P. A., & Allen, J. R. (2013). Basin analysis principles and applications (p. 549). Oxford: Blackwell Science.

    Google Scholar 

  • Anderson, I., Malone, D. H., & Craddock, J. P. (2019). Preliminary detrital zircon U-Pb geochronology of the Wasatch Formation, Powder River Basin, Wyoming. The Mountain Geologist, 56, 247–265.

    Article  Google Scholar 

  • Angevine, C. L., Heller, P. L., & Paola, C. (1990). Quantitative sedimentary basin modeling (p. 247). Tulsa.: American Association of Petroleum Geologists.

    Book  Google Scholar 

  • Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4, 231–235.

    Article  Google Scholar 

  • Armstrong, R. L. (1968). Sevier orogenic belt in Nevada and Utah. Geological Society of America Bulletin, 79, 429–458.

    Article  Google Scholar 

  • Aslan, A., & Autin, W. J. (1998). Holocene flood-plain soil formation in the southern lower Mississippi Valley: Implications for interpreting alluvial paleosols. Geological Society of America Bulletin, 110, 433–449.

    Article  Google Scholar 

  • Baczynski, A. A., McInerney, F. A., Wing, S. L., Kraus, M. J., Bloch, J. I., Boyer, D. M., Secord, R., Morse, P. E., & Fricke, H. C. (2013). Chemostratigraphic implications of spatial variation in the paleocene-eocene thermal maximum carbon isotope excursion, SE Bighorn Basin, Wyoming. Geochemistry, Geophysics, Geosystems, 14, 4133–4152.

    Article  Google Scholar 

  • Baczynski, A. A., McInerney, F. A., Wing, S. L., Kraus, M. J., Morse, P. E., Bloch, J. I., Chung, A. H., & Freeman, K. H. (2016). Distortion of carbon isotope excursion in bulk soil organic matter during the Paleocene-Eocene thermal maximum. Geological Society of America Bulletin, 128, 1352–1366.

    Article  Google Scholar 

  • Barclay, R. S., Rioux, M., Meyer, L. B., Bowring, S. A., Johnson, K. R., & Miller, I. M. (2015). High precision U-Pb zircon geochronology for Cenomanian Dakota formation floras in Utah. Cretaceous Research, 52, 213–237.

    Article  Google Scholar 

  • Barefoot, E. A., Nittrouer, J. A., Foreman, B. Z., Hajek, E. A., Dickens, G. R., Baisden, T., & Toms, L. (2021). Evidence for enhanced fluvial channel mobility and fine sediment export due to precipitation seasonality during the Paleocene-Eocene thermal maximum. Geology, 50, 116–120.

    Article  Google Scholar 

  • Barrera, E., & Savin, S. M. (1999). Evolution of late Campanian-Maastrichtian marine climates and oceans. In E. Barrera & C. C. Johnson (Eds.), Evolution of the cretaceous ocean-climate system (Vol. 332, pp. 245–282). Geological Society of America Special Paper.

    Chapter  Google Scholar 

  • Behrensmeyer, A. K., Willis, B. J., & Quade, J. (1995). Floodplains and paleosols of Pakistan Neogene and Wyoming Paleogene deposits: A comparative study. Palaeogeography, Palaeoclimatology, Palaeoecology, 115, 37–60.

    Article  Google Scholar 

  • Blodgett, R. H. (1988). Calcareous paleosols in the Triassic Dolores formation, southwestern Colorado. In J. Reinhardt & W. R. Sigleo (Eds.), Paleosols and weathering through geologic time (Vol. 216, pp. 103–122pp). Chennai: Geological Society of America Special Papers.

    Chapter  Google Scholar 

  • Bourne, M. D., Feinberg, J. M., Strauss, B. E., Hardt, B., Cheng, H., Rowe, H. D., Springer, G., & Edwards, R. L. (2015). Long-term changes in precipitation recorded by magnetic minerals in speleothems. Geology, 43, 595–598.

    Article  Google Scholar 

  • Bowen, G. J., & Bowen, B. B. (2008). Mechanisms of PETM global change constrained by a new record from central Utah. Geology, 36, 379–382.

    Article  Google Scholar 

  • Bowen, G. J., Koch, P. L., Gingerich, P. D., Norris, R. D., Bains, S., & Corfield, R. M. (2001). Refined isotope stratigraphy across the continental Paleocene-Eocene boundary on Polecat Bench in the northern Bighorn Basin. In P. D. Gingerich (Ed.), Paleocene-eocene stratigraphy and biotic change in the Bighorn and Clarks Fork Basins, Wyoming 33 (pp. 73–88). University of Michigan Papers on Paleontology.

    Google Scholar 

  • Bown, T. M. (1980). Summary of latest cretaceous and cenozoic sedimentary, tectonic, and erosional events, Bighorn Basin, Wyoming. In P. D. Gingerich (Ed.), Early Cenozoic paleontology and stratigraphy of the Bighorn Basin, Wyoming (Vol. 24, pp. 25–32). Museum of Paleontology The University of Michigan Papers on Paleontology.

    Google Scholar 

  • Bown, T. M., & Kraus, M. J. (1987). Integration of channel and floodplain suites, I. Developmental sequence and lateral relations of alluvial paleosols. Journal of Sedimentary Petrology, 57, 587–601.

    Google Scholar 

  • Bridge, J. S., & Leeder, M. R. (1979). A simulation model of alluvial stratigraphy. Sedimentology, 26, 617–644.

    Article  Google Scholar 

  • Bridges, E.M. (1973). Some characteristics of alluvial soils in the Trent Valley, England. In: Schlichting, E., Schwermann, U. (Eds), Pseudogley and gley. Soil Science Soc. Trans. 5th and 6th Comm. p. 247–253.

  • Bump, A. P., & Davis, G. H. (2003). Late Cretaceous–early Tertiary Laramide deformation of the northern Colorado Plateau, Utah and Colorado. Journal of Structural Geology, 25, 421–440.

    Article  Google Scholar 

  • Burger, B.J. (2009). Mammalian faunal change across the Paleocene–Eocene boundary in the Piceance Creek basin, western Colorado [Ph.D. Dissertation]. University of Colorado, Boulder, Colorado. pp. 784.

  • Burger, B. J. (2007). A new late Paleocene vertebrate fauna from the Ohio Creek formation of western Colorado. The Mountain Geologist, 44, 141–150.

    Google Scholar 

  • Burger, B. J. (2012). Northward range extension of a diminutive-sized mammal (Ectocion parvus) and the implication of body-size change during the Paleocene-Eocene Thermal Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 363, 144–150.

    Article  Google Scholar 

  • Burger, B. J., & Honey, J. G. (2008). Plesiadapidae (Mammalia, Primates) from the late Paleocene Fort Union Formation of the Piceance Creek Basin, Colorado. Journal of Vertebrate Paleontology, 28, 816–825.

    Article  Google Scholar 

  • Burton, D., Greenhalgh, B., Britt, B. B., Kowallis, B., Elliott, W. S., & Barrick, R. (2006). New radiometric ages from the Cedar Mountain Formation, Utah and the Cloverly Formation, Wyoming: implications for contained dinosaur faunas. Geological Society of America Abstracts with Programs, 38, 52.

    Google Scholar 

  • Bush, M. A., Horton, B. K., Murphy, M. A., & Stockli, D. F. (2016). Detrital record of initial basement exhumation along the Laramide deformation front, southern Rocky Mountains. Tectonics, 35, 2117–2130.

    Article  Google Scholar 

  • Buurman, P. (1975). Possibilities of paleopedology. Sedimentology, 22, 289–298.

    Article  Google Scholar 

  • Carmichael, M. J., Pancost, R. D., & Lunt, D. J. (2018). Changes in the occurrence of extreme precipitation events at the Paleocene-Eocene thermal maximum. Earth and Planetary Science Letters, 501, 24–36.

    Article  Google Scholar 

  • Carroll, A. R., Chetel, L. M., & Smith, M. E. (2006). Feast to famine: Sediment supply control on Laramide basin fill. Geology, 34, 197–200.

    Article  Google Scholar 

  • Cather, S. M. (2004). The Laramide orogeny in central and northern New Mexico and southern Colorado. In G. H. Mack & K. A. Giles (Eds.), The geology of new mexico, a geologic history (Vol. 11, pp. 203–248). Geological Society Special Publication.

    Google Scholar 

  • Cather, S. M., Heizler, M. T., & Williamson, T. E. (2019). Laramide fluvial evolution of the San Juan Basin, New Mexico and Colorado: Paleocurrent and detrital-sanidine age constraints from the Paleocene Nacimiento and Animas formations. Geosphere, 15, 1641–1664.

    Article  Google Scholar 

  • Chan, M. A., Parry, W. T., & Bowman,. (2000). Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones, southeastern Utah. AAPG Bulletin, 84, 1281–1310.

    Google Scholar 

  • Chetel, L. M., Janecke, S. U., Carroll, A. R., Beard, B. L., Johnson, C. M., & Singer, B. S. (2011). Paleogeographic reconstruction of the Eocene Idaho River, North American Cordillera. Geological Society of America Bulletin, 123, 71–88.

    Article  Google Scholar 

  • Copeland, P., Currie, C. A., Lawton, T. F., & Murphy, M. A. (2017). Location, location, location: The variable lifespan of the Laramide orogeny. Geology, 45, 223–226.

    Article  Google Scholar 

  • Cotton, J. M., Sheldon, N. D., Hren, M. T., & Gallagher, T. M. (2015). Positive feedback drives carbon release from soils to atmosphere during Paleocene/Eocene warming. American Journal of Science, 315, 337–361.

    Article  Google Scholar 

  • Cross, T. A. (1986). Tectonic controls of foreland basin subsidence and Laramide style deformation, western United States. Special Publications of the International Association of Sedimentologists, 8, 15–39.

    Google Scholar 

  • D’Emic, M. D., Foreman, B. Z., Jud, N. A., Britt, B. B., Schmitz, M., & Crowley, J. (2019). Chronostratigraphic revision of the Cloverly Formation (Lower Cretaceous, Western Interior, USA). Peabody Museum of Natural History Bulletin, 60, 3–41.

    Article  Google Scholar 

  • Darmody, R. G., Thorn, C. E., & Allen, C. E. (2005). Chemical weather and boulder mantles, Kȁrkevagge, Swedish Lapland. Geomorphology, 67, 159–170.

    Article  Google Scholar 

  • Davies-Vollum, K. S. (1999). The formation of beds underlying carbonaceous shales as aquic paleosols: examples from the Bighorn Basin of Wyoming. International Journal of Coal Geology, 41, 239–255.

    Article  Google Scholar 

  • Davies-Vollum, K. S. (2001). Not just red beds: The occurrence and formation of drab sections in the Willwood Formation of the Bighorn Basin. In P. D. Gingerich (Ed.), Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming (Vol. 33, pp. 29–36). University of Michigan Papers on Paleontology.

    Google Scholar 

  • Davies-Vollum, K. S., & Kraus, M. J. (2001). A relationship between alluvial backswamps and avulsion cycles: an example from the Willwood Formation of the Bighorn Basin, Wyoming. Sedimentary Geology, 140, 235–249.

    Article  Google Scholar 

  • Davies-Vollum, K. S., & Wing, S. L. (1998). Sedimentological, taphonomic, and climatic aspects of Eocene swamp deposits (Willwood Formation Bighorn Basin, Wyoming). Palaios, 13, 28–40.

    Article  Google Scholar 

  • DeCelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A. American Journal of Science, 304, 105–168.

    Article  Google Scholar 

  • DeCelles, P. G., Gray, M. B., Ridgway, K. D., Cole, R. B., Srivastava, P., Pequera, N., & Pivnik, D. A. (1991). Kinematic history of a foreland uplift from Paleocene synorogenic conglomerate, Beartooth Range, Wyoming and Montana. Geological Society of America Bulletin, 103, 1458–1475.

    Article  Google Scholar 

  • Dechesne, M., Currano, E. D., Dunn, R. E., Higgins, P., Hartman, J. H., Chamberlain, K. R., & Holm-Denoma, C. S. (2020). A new stratigraphic framework and constraints for the position of the Paleocene-Eocene boundary in the rapidly subsiding Hanna Basin, Wyoming. Geosphere, 16, 594–618.

    Article  Google Scholar 

  • Demko, T. M., Currie, B. S., & Nicoll, K. A. (2004). Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank architecture in the Morrison formation (Upper Jurassic), Western Interior, USA. Sedimentary Geology, 167, 115–135.

    Article  Google Scholar 

  • Denis, E. H., Foreman, B. Z., & Freeman, K. H. (2021). Soil carbon degradation during the Paleocene-Eocene thermal maximum in the Piceance Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 564, 110182.

    Article  Google Scholar 

  • Dickinson, W. R. (2004). Evolution of the North American Cordillera. Annual Review of Earth and Planetary Sciences, 32, 13–45.

    Article  Google Scholar 

  • Dickinson, W. R., Klute, M. A., Hayes, M. J., Janecke, S. U., Lundin, E. R., McKittrick, M. A., & Olivares, M. D. (1988). Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geological Society of America Bulletin, 100, 1023–1039.

    Article  Google Scholar 

  • Dickinson, W. R., Lawton, T. F., Pecha, M., Davis, S. J., Gehrels, G. E., & Young, R. A. (2012). Provenance of the Paleogene Colton Formation (Uinta Basin) and Cretaceous-Paleogene provenance evolution in the Utah foreland: Evidence from U-Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies. Geosphere, 8, 854–880.

    Article  Google Scholar 

  • Donnell, J. R. (1969). Paleocene and lower Eocene units in the southern part of the Piceance Creek basin, Colorado. United States Geological Survey Bulletin, 1274, 1–18.

    Google Scholar 

  • Dossett, T.S. (2014). The first 40Ar/39Ar ages and tephrochronologic framework for the Jurassic Entrada Sandstone in centra Utah. M.S. Thesis, Brigham Young University, p. 126.

  • Duchaufour, P. (1982). Pedology (p. 448). Allen and Unwin.

    Book  Google Scholar 

  • Dzombak, R. M., Midttun, N. C., Stein, R. A., & Sheldon, N. D. (2021). Incorporating lateral variability and extent of paleosols into proxy uncertainty. Palaeogeography, Palaeoclimatology, Palaeoecology, 582, 110641.

    Article  Google Scholar 

  • Egli, R. (2004). Characterization of individual rock magnetic components by analysis of Remanence curves, 1. Unmixing natural sediments. Studia Geophysica Et Geodaetica, 48, 391–446.

    Article  Google Scholar 

  • Ellis, M.S. & Gabaldo (1989). Geologic map and cross section of parts of the Grand Junction and Delta 30’ X 60’ quadrangles, west-central Colorado. U.S. Geological Survey Coal Investigations Map C-0124, 1 Sheet (Scale 1:100,000)

  • Erhardt, A.M. (2005). Relative contributions of tectonics and climate on fluvial sedimentation in the Wasatch Formation of western Colorado [M.S. Thesis]. Colorado School of Mines, p. 118.

  • Fan, M., & Carrapa, B. (2014). Late Cretaceous-early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction. Tectonics, 33, 509–529.

    Article  Google Scholar 

  • Fan, M., DeCelles, P. G., Gehrels, G. E., Dettman, D. L., Quade, J., & Peyton, S. L. (2011). Sedimentology, detrital zircon geochronology, and stable isotope geochemistry of the lower Eocene strata in the Wind River Basin, central Wyoming. Geological Society of America Bulletin, 123, 979–996.

    Article  Google Scholar 

  • Fastovsky, D. E., & McSweeney, K. (1987). Paleosols spanning the Cretaceous-Paleogene transition, eastern Montana and western North Dakota. Geological Society of America Bulletin, 99, 66–77.

    Article  Google Scholar 

  • Fielding, C. R. (2006). Upper flow regime sheets, lenses and scour fills: extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology, 190, 227–240.

    Article  Google Scholar 

  • Fielding, C. R., Alexander, J., & Allen, J. P. (2017). The role of discharge variability in the formation and preservation of alluvial sediment bodies. Sedimentary Geology, 365, 1–20.

    Article  Google Scholar 

  • Foreman, B. Z. (2014). Climate-driven generation of a fluvial sheet sand-body at the Paleocene-Eocene boundary in northwest Wyoming (U.S.A.). Basin Research, 26, 225–241.

    Article  Google Scholar 

  • Foreman, B. Z., Heller, P. L., & Clementz, M. T. (2012). Fluvial response to abrupt global warming at the Palaeocene-Eocene boundary. Nature, 491, 92–95.

    Article  Google Scholar 

  • Foreman, B. Z., & Rasmussen, D. M. (2016). Provenance signals in the Piceance Creek Basin: Unroofing of the Sawatch Range and extent of the early Paleogene California river system (Colorado, U.S.A.). Journal of Sedimentary Research, 86, 1345–1358.

    Article  Google Scholar 

  • Fricke, H. C., Foreman, B. Z., & Sewall, J. O. (2010). Integrated climate model oxygen isotope evidence for a North American monsoon during the Late Cretaceous. Earth and Planetary Science Letters, 289, 11–21.

    Article  Google Scholar 

  • Fricke, H. C., & Wing, S. L. (2004). Oxygen isotope and paleobotanical estimates of temperature and δ 18O–latitude gradients over North America during the early Eocene. American Journal of Science, 304, 612–635.

    Article  Google Scholar 

  • Gall, R. D., Birgenheier, L. P., & Vandenberg, M. D. (2017). Highly seasonal and perennial fluvial facies: Implications for climatic control on the Douglas Creek and Parachute Creek Members, Green River Formation, southeastern Uinta Basin, Utah, U.S.A. Journal of Sedimentary Research, 87, 1019–1047.

    Article  Google Scholar 

  • Galloway, W. E., Whiteaker, T. L., & Ganey-Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973.

    Article  Google Scholar 

  • Gaskill, D. L., & Godwin, L. H. (1963). Redefinition and correlation of the Ohio Creek formation (Paleocene) in west-central Colorado (pp. 35–38). United States Geological Survey Professional Paper.

    Google Scholar 

  • Geiss, C. E., Egli, R., & Zanner, C. W. (2008). Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. Journal of Geophysical Research, 113, B11102.

    Article  Google Scholar 

  • Gingerich, P. D. (2003). Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. In S. L. Wing, P. D. Gingerich, B. Schmitz, & E. Thomas (Eds.), Causes and Consequences of Globally Warm Climates in the Early Paleogene (Vol. 369, pp. 463–478). Geological Society of America Special Papers.

    Google Scholar 

  • Gingerich, P. D. (2006). Environment and evolution through the Paleocene-Eocene thermal maximum. Trends in Ecology and Evolution, 21, 246–253.

    Article  Google Scholar 

  • Greenberg, E., Ganti, V., & Hajek, E. (2021). Quantifying bankfull flow width using preserved bar clinoforms from fluvial strata. Geology, 49, 1038–1043.

    Article  Google Scholar 

  • Gries, R. (1983). North-south compression of Rocky mountain foreland structures. In J. D. Lowell (Ed.), Rocky mountain foreland basins and uplifts (pp. 9–32). Rocky Mountain Association of Geologists.

    Google Scholar 

  • Hajek, E. A., Heller, P. L., & Schur, E. L. (2012). Field test of autogenic control on alluvial stratigraphy (Ferris Formation, upper Cretaceous-Paleogene, Wyoming). Geological Society of America Bulletin, 124, 1898–1912.

    Article  Google Scholar 

  • Hajek, E. A., Heller, P. L., & Sheets, B. A. (2010). Significance of channel-belt clustering in alluvial basins. Geology, 38, 535–538.

    Article  Google Scholar 

  • Hajek, E. A., & Straub, K. M. (2017). Autogenic sedimentation in clastic stratigraphy. Annual Review of Earth and Planetary Science, 45, 681–709.

    Article  Google Scholar 

  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electronica., 4, 9.

    Google Scholar 

  • Heller, P. L., Angevine, C. L., Winslow, N. S., & Paola, C. (1988). Two-phase stratigraphic model of foreland-basin sequences. Geology, 16, 501–504.

    Article  Google Scholar 

  • Heller, P. L., Mathers, G., Dueker, K., & Foreman, B. Z. (2013). Far-traveled Cretaceous-Paleogene conglomerates of the Southern Rocky Mountains, USA: record of transient Laramide tectonism. Geological Society of America Bulletin, 125, 490–498.

    Article  Google Scholar 

  • Hessler, A. M., Zhang, J., Covault, J., & Ambrose, W. (2017). Continental weathering coupled to Paleogene climate changes in North America. Geology, 45, 911–914.

    Article  Google Scholar 

  • Holland, S.M. (2021). Backstrip, version 1.1. www.huntmountainsoftware.com

  • Hyland, E. G., & Sheldon, N. D. (2013). Coupled CO2-climate response during the Early Eocene climatic optimum. Palaeogeography, Palaeoclimatology, Palaeocology, 369, 125–135.

    Article  Google Scholar 

  • Ielpi, A., & Lapôtre, M. G. A. (2020). A tenfold slowdown in river meander migration driven by plant life. Nature Geoscience, 13, 82–86.

    Article  Google Scholar 

  • Irmis, R. B., Mundil, R., Martz, J. W., & Parker, W. G. (2011). High-resolution U-Pb ages from the Upper Triassic Chinle Formation (New Mexico, USA) support a diachronous rise of dinosaurs. Earth and Planetary Science Letters, 309, 258–267.

    Article  Google Scholar 

  • Jacobs, P. M., West, L. T., & Shaw, J. N. (2002). Redoximorphic features as indicators of seasonal saturation, Lowndes County, Georgia. Soil Science Society of America Journal, 66, 315–323.

    Article  Google Scholar 

  • Jerolmack, D. J., & Mohrig, D. (2007). Conditions for branching in depositional rivers. Geology, 5, 463–466.

    Article  Google Scholar 

  • Jinnah, Z. A., & Roberts, E. M. (2011). Facies associations, paleoenvironment, and base-level changes in the Upper Cretaceous Wahweap Formation, Utah, U.S.A. Journal of Sedimentary Research, 81, 266–283.

    Article  Google Scholar 

  • Johnson, D. M., Hooper, P. R., & Conrey, R. M. (1999). XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. International Centre for Diffraction Data, 41, 843–867.

    Google Scholar 

  • Johnson, R. B. (1959). Geology of the Huerfano Park area, Huerfano and Custer counties, Colorado (Vol. 1071-D, pp. 1–36). Chennai: United States Geological Survey Bulletin.

    Google Scholar 

  • Johnson, R. C., & Finn, T. M. (1986). Cretaceous through Holocene history of the Douglas Creek Arch, Colorado and Utah. In D. S. Stone (Ed.), New interpretations of northwest Colorado geology (pp. 77–95). Rocky Mountains Association of Geologists.

    Google Scholar 

  • Johnson, R. C., & Flores, R. M. (2003). History of the Piceance basin from latest Cretaceous through early Eocene and the characterization of lower tertiary sandstone reservoirs. In K. M. Peterson, T. M. Olson, & D. A. Anderson (Eds.), Piceance basin guidebook (pp. 21–61). Rocky Mountain Association of Geologists.

    Google Scholar 

  • Johnson, R. C., & May, F. (1978). Preliminary stratigraphic studies of the Mesaverde Group the Wasatch formation, and the lower part of the Green River formation, DeBeque Area, Colorado, including environments of deposition and investigations of palynomorph assemblages. United States Geological Survey Miscellaneous Field Studies Map.

    Google Scholar 

  • Jones, C. H., Farmer, G. L., Sageman, B., & Zhong, S. (2011). Hydrodynamic mechanism for the Laramide orogeny. Geosphere, 7, 183–201.

    Article  Google Scholar 

  • Keefer, W. R. (1965). Stratigraphy and geologic history of the uppermost Cretaceous, Paleocene, and lower Eocene rocks in the Wind River Basin, Wyoming (Vol. 495, pp. 1–77). United States Geological Survey Professional Paper.

    Google Scholar 

  • Kennett, J. P., & Stott, L. D. (1991). Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353, 225–229.

    Article  Google Scholar 

  • Kirkland, J. I., Suarez, M., Suarez, C., & Hunt-Foster, R. (2016). The lower Cretaceous in east-central Utah—The Cedar Mountain formation and its bounding strata. Geology of the Intermountain West, 3, 101–228.

    Article  Google Scholar 

  • Koch, P. L., Zachos, J. C., & Gingerich, P. D. (1992). Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature, 358, 319–322.

    Article  Google Scholar 

  • Kraus, M.J. (1982). Genesis of Early Tertiary Exotic Metaquartzite Conglomerates in the Absaroka‐Bighorn Region, Northwest Wyoming. Wyoming Geological Association Guidebook, 33rd Annual Field Conference, p. 103–110.

  • Kraus, M. J. (1992). Alluvial response to differential subsidence: sedimentological analysis aided by remote sensing, Willwood Formation Eocene., Bighorn Basin, Wyoming, USA. Sedimentology, 39, 455–470.

    Article  Google Scholar 

  • Kraus, M. J. (1997). Lower Eocene alluvial paleosols: Pedogenic development, stratigraphic relationships, and paleosol/landscape associations. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 387–406.

    Article  Google Scholar 

  • Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47, 41–70.

    Article  Google Scholar 

  • Kraus, M. J., & Aslan, A. (1993). Eocene hydromorphic paleosols: Significance for interpreting ancient floodplain processes. Journal of Sedimentary Petrology, 63, 453–463.

    Google Scholar 

  • Kraus, M. J., & Aslan, A. (1999). Paleosol sequences in floodplain environments: a hierarchical approach. In M. Thiry (Ed.), Palaeoweathering, Palaeosurfaces and related continental deposits (Vol. 27, pp. 303–321). International Association of Sedimentologists Special Publication.

    Google Scholar 

  • Kraus, M. J., & Gwinn, B. (1997). Facies and facies architecture of Paleogene floodplain deposits, Willwood Formation, Bighorn Basin, Wyoming, USA. Sedimentary Geology, 114, 33–54.

    Article  Google Scholar 

  • Kraus, M. J., & Hasiotis, S. T. (2006). Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 76, 633–646.

    Article  Google Scholar 

  • Kraus, M. J., McInerney, F. A., Wing, S. L., Secord, R., Baczynski, A. A., & Bloch, J. I. (2013). Paleohydrologic response to continental warming during the Paleocene-Eocene thermal maximum, Bighorn Basin, Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 196–208.

    Article  Google Scholar 

  • Kraus, M. J., & Riggins, S. (2007). Transient drying during the Paleocene-Eocene thermal maximum (PETM): analysis of paleosols in the Bighorn Basin, Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 444–461.

    Article  Google Scholar 

  • Kraus, M. J., Woody, D. T., Smith, J. J., & Dukic, V. (2015). Alluvial response to the Paleocene-Eocene thermal maximum climatic event, Polecat Bench, Wyoming (U.S.A.). Palaeogeography, Palaeoclimatology, Palaeoecology, 435, 177–192.

    Article  Google Scholar 

  • Lascu, I., Banerjee, S. K., & Berquo, T. S. (2010). Quantifying the concentration of ferrimagnetic particles in sediments using rock magnetic methods. Geochemistry Geophysics Geosystems., 11, Q08Z19.

    Article  Google Scholar 

  • Lawton, T. F. (2008). Laramide sedimentary basins. Sedimentary Basins of the World, 5, 429–450.

    Article  Google Scholar 

  • Leeder, M.R. (1978). A quantitative stratigraphic model for alluvium, with special reference to channel deposit density and interconnectedness. In: Miall, A.D. (Ed.), Fluvial Sedimentology Canadian Society of Petroleum Geology Memoir vol 5. 587–596.

  • Lewin, J. (1978). Floodplain geomorphology. Progress in Physical Geography, 2, 408–437.

    Article  Google Scholar 

  • Liu, L., & Gurnis, M. (2010). Dynamic subsidence and uplift of the Colorado Plateau. Geology, 38, 663–666.

    Article  Google Scholar 

  • Liu, L., Gurnis, M., Seton, M., Saleeby, J., Muller, R. D., & Jackson, J. M. (2010). The role of oceanic plateau subduction in the Laramide orogeny. Nature Geoscience, 3, 353–357.

    Article  Google Scholar 

  • Lorenz, J. C., & Nadon, G. (2002). Braided-river deposits in a muddy depositional setting: the Molina Member of the Wasatch Formation (Paleogene), west-central Colorado, U.S.A. Journal of Sedimentary Research, 72, 376–385.

    Article  Google Scholar 

  • Lyons, S. L., Baczynski, A. A., Babila, T. L., Bralower, T. J., Hajek, E. A., Kump, L. R., Polites, E. G., Self-Trail, J. M., Trampush, S. M., Vornlocher, J. R., Zachos, J. C., & Freeman, K. H. (2019). Palaeocene-Eocene thermal maximum prolonged by fossil carbon oxidation. Nature Geoscience, 12, 54–60.

    Article  Google Scholar 

  • Mack, G. H., James, W. C., & Monger, H. C. (1993). Classification of paleosols. Geological Society of America Bulletin, 105, 129–136.

    Article  Google Scholar 

  • Magioncalda, R., Dupuis, C., Smith, T., Steurbaut, E., & Gingerich, P. D. (2004). Paleocene-Eocene carbon isotope excursion in organic carbon and pedogenic carbonate: Direct comparison in a continental stratigraphic section. Geology, 32, 553–556.

    Article  Google Scholar 

  • Maher, B. A., Karloukovski, V. V., & Mutch, T. J. (2004). High-field remanence properties of synthetic and natural submicrometre haemetites and goethites: significance for environmental contexts. Earth and Planetary Science Letters, 226, 491–505.

    Article  Google Scholar 

  • Malone, D. H., Craddock, J. P., & Mathesin, M. K. (2014). Age and Provenance of Allochthonous Volcanic Rocks at Squaw Peaks, WY: Implications for the Heart Mountain Slide. The Mountain Geologist, 51, 321–336.

    Google Scholar 

  • Marriott, S. B., & Wright, V. P. (1993). Paleosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites, South Wales. Journal of the Geological Society of London, 150, 1109–1120.

    Article  Google Scholar 

  • Maxbauer, D. P., Feinberg, J. M., & Fox, D. L. (2016b). Magnetic minerals assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges. Earth Science Reviews, 155, 28–48.

    Article  Google Scholar 

  • Maxbauer, D. P., Feinberg, J. M., & Fox, D. L. (2016c). MAX UnMix: A web application for unmixing magnetic coercivity distributions. Computers and Geoscience, 95, 140–145.

    Article  Google Scholar 

  • Maxbauer, D. P., Feinberg, J. M., Fox, D. L., & Clyde, W. C. (2016a). Magnetic minerals as recorders of weathering, diagenesis, and paleoclimate: A core-outcrop comparison of Paleocene-Eocene paleosols in the Bighorn Basin, WY, USA. Earth and Planetary Science Letters, 452, 15–26.

    Article  Google Scholar 

  • Maxbauer, D. P., Feinberg, J. M., Fox, D. L., & Nater, E. A. (2017). Pedogenic magnetite is conservative in different soil types developed under uniform climate, topography, and parent material. Scientific Reports, 7, 17575.

    Article  Google Scholar 

  • Maynard, J. B. (1992). Chemistry of modern soils as a guide to interpreting Precambrian paleosols. Journal of Geology, 100, 279–289.

    Article  Google Scholar 

  • McCabe, P. J. (1984). Depositional environments of coal and coal-bearing satra. In R. A. Rahmani & R. M. Flores (Eds.), Sedimentology of coal and coal-bearing sequences (Vol. 7, pp. 13–42). International Association for Sedimentologists Special Publications.

    Google Scholar 

  • McInerney, F. A., & Wing, S. L. (2011). The Paleocene-Eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earths and Planetary Science, 39, 489–516.

    Article  Google Scholar 

  • Mohrig, D., Heller, P. L., Paola, C., & Lyons, W. J. (2000). Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (northern Spain) and Wasatch Formation (western Colorado). Geological Society of America Bulletin, 112, 1787–1803.

    Article  Google Scholar 

  • Molina-Garza, R. S., Geissman, J. W., & Lucas, S. G. (2003). Paleomagnetism and magnetostratigraphy of the lower Glen Canyon and upper Chinle Groups, Jurassic-Triassic of northern Arizona and northeast Utah. Journal of Geophysical Research, 108, 2181.

    Article  Google Scholar 

  • Neasham, J. W., & Vondra, C. F. (1972). Stratigraphy and petrology of the lower Eocene Willwood formation, Bighorn Basin, Wyoming. Geological Society of America Bulletin, 83, 2167–2180.

    Article  Google Scholar 

  • Nicolo, M. J., Dickens, G. R., Hollis, C. J., & Zachos, J. C. (2007). Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology, 35, 699–702.

    Article  Google Scholar 

  • Nordt, L. C., & Driese, S. D. (2010). New weathering index improves paleorainfall estimates from vertisols. Geology, 38, 407–410.

    Article  Google Scholar 

  • O’Sullivan, R. B., Carey, M. A., & Good, S. C. (2006). Fossils from the middle Jurassic Wanakah formation near Delta in western (p. 6). US Geological Survey Scientific.

    Google Scholar 

  • Orgeira, M. J., Egli, R., & Compagnucci, R. H. (2011). A quantitative model of magnetic enhancement in loessic soils. In E. Petrovsky, D. Ivers, T. Harinarayana, & E. Herrero-Bervera (Eds.), The Earth’s magnetic interior (pp. 361–397). Springer.

    Chapter  Google Scholar 

  • Owen, A., Ebinghaus, A., Hartley, A. J., Santos, M. G. M., & Weissmann, G. S. (2017). Multi-scale classification of fluvial architecture: an example from the Palaeocene-Eocene Bighorn Basin, Wyoming. Sedimentology, 64, 1572–1596.

    Article  Google Scholar 

  • Owen, A., Hartley, A. J., Ebinghaus, A., Weissmann, G. S., & Santos, M. G. M. (2019). Basin-scale predictive models of alluvial architecture: Constraints from the Palaeocene-Eocene, Bighorn Basin, Wyoming, USA. Sedimentology, 66, 736–763.

    Article  Google Scholar 

  • Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damaste ́, J. S., Dickens, G. R., Backman, J., Clemens, S., Cronin, T., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R., Kaminski, M., King, J., Koc, N., Martinez, N. C., … Expedition 302 Scientists. (2006). Arctic hydrology during global warming at the Paleocene/Eocene thermal maximum. Nature, 442, 671–675.

    Article  Google Scholar 

  • Parry, W. T., Chan, M. A., & Beitler, B. (2004). Chemical bleaching indicates episodes of fluid flow in deformation bands in sandstone. AAPG Bulletin, 88, 175–191.

    Article  Google Scholar 

  • Patterson, P. E., Kronmueller, K., & Davies, T. D. (2003). Sequence stratigraphy of the Mesa Verde Group and Ohio Creek Conglomerate, Northern Piceance Basin, Colorado. In K. M. Peterson, T. M. Olson, & D. S. Anderson (Eds.), Piceance Basin 2003 Guidebook (pp. 115–128). Rocky Mountain Association of Geologists.

    Google Scholar 

  • Pipiringos, G. N., & O’Sullivan, R. B. (1978). Principal unconformities in Triassic and Jurassic Rocks, Western Interior United States—A preliminary survey (Vol. 1035-A, p. 29). Geological Society Professional Paper.

    Google Scholar 

  • PiPujol, M. D., & Buurman, P. (1994). The distinction between ground-water gley and surface-water gley phenomena in Tertiary paleosols of the Ebro Basin, NE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 110, 103–113.

    Article  Google Scholar 

  • PiPujol, M. D., & Buurman, P. (1997). Dynamics of iron and calcium carbonate redistribution and palaeohydrology in middle Eocene alluvial paleosols of the southeast Ebro Basin margin (Catalonia, northeast Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 87–107.

    Article  Google Scholar 

  • Platt, N. H., & Keller, B. (1993). In reply to Buurman, P., Distal alluvial deposits in a foreland basin setting-the lower freshwater molasse (lower Miocene), switzerland: sedimentology, architecture and paleosols. Sedimentology, 40, 1023–1025.

    Article  Google Scholar 

  • Pujalte, V., Baceta, J. I., & Schmitz, B. (2015). A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: The missing ingredient in a coeval abrupt change in hydrological regime. Climates of the past, 11, 1653–1672.

    Article  Google Scholar 

  • Ramos, E. J., Breecker, D. O., Barnes, J. D., Li, F., Gingerich, P. D., Loewy, S. L., Satkoski, A. M., Baczynski, A. A., Wing, S. K., Miller, N. R., & Lassiter, J. C. (2022). Swift weathering response on floodplains during the Paleocene-Eocene Thermal Maximum. Geophysical Research Letters, 49, 2021097436.

    Article  Google Scholar 

  • Rasmussen, D. M., & Foreman, B. Z. (2017). Provenance of lower Paleogene strata in the Huerfano Basin: Implications for uplift of the Wet Mountains, Colorado, U.S.A. Journal of Sedimentary Research, 87, 579–593.

    Article  Google Scholar 

  • Rasmussen, D. M., Foreman, B. Z., Fricke, H. C., Snell, K., Gipson, L., & Housen, B. (2020). The early Paleogene stratigraphic evolution of the Huerfano Basin, Colorado. Rocky Mountain Geology, 55, 1–26.

    Article  Google Scholar 

  • Raynolds, R. G. (2002). Upper Cretaceous and Tertiary stratigraphy of the Denver Basin, Colorado. Rocky Mountain Geology, 37, 111–134.

    Article  Google Scholar 

  • Retallack, G. J. (1988). Field recognition of paleosols. In J. Reinhardt & W. R. Sigleo (Eds.), Paleosols and weathering through geologic time: Principles and applications (Vol. 216, pp. 1–20). Geological Society of America Special Paper.

    Chapter  Google Scholar 

  • Retallack, G. J. (1994). The environmental factor approach to the interpretation of paleosols. In R. Amundson, J. W. Harden, & M. J. Singer (Eds.), Factors of soil formation: A fiftieth anniversary retrospective (Vol. 33, pp. 31–64). Soil Science Society of America Special Publication.

    Google Scholar 

  • Retallack, G. J. (1997). A colour guide to paleosols (p. 175). Wiley.

    Google Scholar 

  • Roberts, A. P. (2015). Magnetic mineral diagenesis. Earth-Science Reviews, 151, 1–47.

    Article  Google Scholar 

  • Roberts, E. M. (2007). Facies architecture and depositional environments of the upper Cretaceous Kaiparowits formation, southern Utah. Sedimentary Geology, 197, 207–233.

    Article  Google Scholar 

  • Rogers, R. R., Kidwell, S. M., Deino, A. L., Mitchell, J. P., Nelson, K., & Thole, J. T. (2016). Age, correlation, and lithostratigraphic revision of the Upper Cretaceous (Campanian) Judith River Formation in its type area (north-central Montana), with a comparison of low- and high-accommodation alluvial records. The Journal of Geology, 124, 99–135.

    Article  Google Scholar 

  • Royer, D. L. (1999). Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology, 27, 1123–1126.

    Article  Google Scholar 

  • Schumacher, B. A., Day, W. J., Amacher, M. C., & Miller, B. J. (1988). Soils of the Mississippi River alluvial plain in Louisiana. Louisiana Agricultural Experiment Station Bulletin., 796, 275.

    Google Scholar 

  • Scott, R.B., Harding, A.E., Hood, W.C., Cole, R.D., Livaccari, R.F., Johnson, J.B., Shroba, R.R., & Dickerson, R.P. (2001). Geologic map of Colorado National Monument and adjacent areas, Mesa County, Colorado. U.S. Geological Survey Geologic Investigations Series I-2740, Scale 1:24,000.

  • Sewall, J. O., & Sloan, L. C. (2006). Come a little bit closer: A high-resolution climate study of the early Paleogene Laramide foreland. Geology, 34, 81–84.

    Article  Google Scholar 

  • Shanley, K. W., & McCabe, P. J. (1994). Perspectives on the sequence stratigraphy of continental strata. American Association of Petroleum Geologists Bulletin, 78, 544–568.

    Google Scholar 

  • Sharman, G. R., Covault, J. A., Stockli, D. F., Wroblewski, A.F.-J., & Bush, M. A. (2017). Early Cenozoic drainage reorganization of the United States Western Interior-Gulf of Mexico sediment routing system. Geology, 45, 187–190.

    Article  Google Scholar 

  • Sheldon, N. D., Retallack, G. J., & Tanaka, S. (2002). Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. Journal of Geology, 110, 687–696.

    Article  Google Scholar 

  • Sheldon, N. D., & Tabor, N. J. (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95, 1–52.

    Article  Google Scholar 

  • Slingerland, R., & Smith, N. D. (2004). River avulsions and their deposits. Annual Review of Earth and Planetary Science, 32, 257–285.

    Article  Google Scholar 

  • Smirnov, A. V., & Tarduno, J. A. (2000). Low-temperature magnetic properties of pelagic sediments (Ocean Drilling Program Site 805C): Tracers of maghemitization and magnetic mineral reduction. Journal of Geophysical Research, 105, 16457–16471.

    Article  Google Scholar 

  • Smith, J. J., Hasiotis, S. T., Kraus, M. J., & Woody, D. T. (2008c). Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum. Palaios, 23, 683–699.

    Article  Google Scholar 

  • Smith, M. E., Carroll, A. R., Jicha, B. R., Cassel, E. J., & Scott, J. J. (2014b). Paleogeographic record of Eocene Farallon slab rollback beneath western North America. Geology, 42, 1039–1042.

    Article  Google Scholar 

  • Smith, M. E., Carroll, A. R., & Mueller, E. R. (2008a). Elevated weathering rates in the Rocky Mountains during the early Eocene Climatic Optimum. Nature Geoscience, 1, 370–374.

    Article  Google Scholar 

  • Smith, M. E., Carroll, A. R., Scott, J. J., & Singer, B. S. (2014a). Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: Green River Formation of Wyoming. Earth and Planetary Science Letters, 403, 393–406.

    Article  Google Scholar 

  • Smith, M. E., Carroll, A. R., & Singer, B. S. (2008b). Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. Geological Society of America Bulletin, 120, 54–84.

    Article  Google Scholar 

  • Smith, N. D., Cross, T. A., Dufficy, J. P., & Clough, S. R. (1989). Anatomy of an avulsion. Sedimentology, 36, 1–23.

    Article  Google Scholar 

  • Sposito, G. (2017). Understanding the Budyko Equation. Water, 9, 236.

    Article  Google Scholar 

  • Sprinkel, D. A., Madsen, S. K., Kirkland, J. I., Waanders, G. L., & Hunt, G. J. (2012). Cedar Mountain and Dakota Formations around Dinosaur National Monument––evidence of the first incursion of the Cretaceous Western Interior Seaway into Utah (Vol. 143, p. 21). Utah Geological Survey Special Study.

    Google Scholar 

  • Stinchcomb, G. E., Nordt, L. C., Driese, S. G., Lukens, W. E., Williamson, F. C., & Tubbs, J. D. (2016). A data-driven spline model designed to predict paleoclimate using paleosol geochemistry. American Journal of Science, 316, 746–777.

    Article  Google Scholar 

  • Straub, K. M., Duller, R. A., Foreman, B. Z., & Hajek, E. A. (2020). Buffered, incomplete, and shredded: The challenges of reading an imperfect stratigraphic record. Journal of Geophysical Research: Earth Surface, 125, e2019JF005079.

    Google Scholar 

  • Tabor, N. J., Montanez, I. P., Kelso, K. A., Currie, B., Shipman, T., & Colombi, C. (2006). A Late Triassic soil catena: Landscape and climate controls on paleosol morphology and chemistry across the Carnian-age Ischigualasto-Villa Union basin, northwestern Argentina. In A. M. Alonso-Zarza & L. H. Tanner (Eds.), Paleoenvironmental record and applications of Calcretes and Palustrine Carbonates (Vol. 416, pp. 17–41). Geological Society of America Special Paper.

    Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.

    Article  Google Scholar 

  • Thrasher, B. L., & Sloan, L. C. (2009). Carbon dioxide and the early Eocene climate of western North America. Geology, 37, 807–810.

    Article  Google Scholar 

  • Tornqvist, T. E., & Bridge, J. S. (2002). Spatial variation of overbank aggradation rate and its influence on avulsion frequency. Sedimentology, 49, 891–905.

    Article  Google Scholar 

  • Trujillo, K. C., & Kowallis, B. J. (2015). Recalibrated legacy 40Ar/39Ar ages for the Upper Jurassic Morrison Formation, Western Interior, U.S.A. Geology of the Intermountain West, 2, 1–8.

    Article  Google Scholar 

  • Tweto, O. (1975). Laramide (Late Cretaceous–early Tertiary) Orogeny in the Southern Rocky Mountains. Geological Society of America Memoir, 144, 1–44.

    Article  Google Scholar 

  • Van Hinte, J. E. (1978). geohistory analysis-application of micropaleontology in exploration geology. American Association of Petroleum Geologists Bulletin, 62, 201–222.

    Google Scholar 

  • Vepraskas, M.J., Wilding, L.P., & Drees, L.R. (1992). Aquic conditions for soil taxonomy: concepts, soil morphology and micromorphology. In Ringrose-Voase, A.J., & Humphreys, G.S. (Eds.), Soil Micromorphology: Studies in Management and Genesis. Elsevier Developments in Soil Science, 22, pp. 117–131.

  • Vepraskas, M. J. (2015). Redoximorphic features for identifying aquic conditions. North Carolina Agriculture Research Service Technical Bulletin, 301, 1–29.

    Google Scholar 

  • Wahl, P. J., Yancey, T. E., Pope, M. C., Miller, B. V., & Ayers, W. B. (2016). U-Pb detrital zircon geochronology of the Upper Paleocene to Lower Eocene Wilcox Group, east-central Texas. Geosphere, 12, 1517–1531.

    Article  Google Scholar 

  • Walker, J. T., Aslan, A., Cole, R. D., & Heizler, M. T. (2021). New age constraints on the Late Cretaceous lower Williams Fork Formation, Coal Canyon, Colorado. The Mountain Geologist, 58, 5–26.

    Article  Google Scholar 

  • Watts, A. B. (2001). Isostasy and flexure of the Lithosphere (p. 480). Oxford Press.

    Google Scholar 

  • Watts, A. B., & Ryan, W. B. F. (1976). Flexure of the lithosphere and continental margin basins. Tectonophysics, 36, 25–44.

    Article  Google Scholar 

  • Welch, J. L., Foreman, B. Z., Malone, D., & Craddock, J. (2022). Provenance of early Paleogene strata in the Bighorn Basin (Wyoming, U.S.A.): Implications for Laramide tectonism and basin-scale stratigraphic patterns. In J. P. Craddock, D. H. Malone, B. Z. Foreman, & A. Konstantinou (Eds.), Tectonic evolution of the Sevier-Laramide Hinterland, thrust belt, and foreland, and postorogenic slab rollback (180–20Ma) (Vol. 555, pp. 241–264). Geological Society of America Special Paper.

    Chapter  Google Scholar 

  • Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., & Frederichs, T. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369, 1383–1387.

    Article  Google Scholar 

  • Whipkey, C. E., Cavaroc, V. V., & Flores, R. M. (1991). Uplift of the Bighorn Mountains, Wyoming and Montana—A sandstone provenance study (Vol. 1917, pp. 1–20). United States Geological Survey Bulletin.

    Google Scholar 

  • Wilding, L. P., & Rehage, J. A. (1985). Pedogenesis of soils and aquic moisture regimes Wetland soil: Characterization classification and utilization (pp. 139–189). International Rice Research Institute.

    Google Scholar 

  • Wilf, P. (2000). Late Paleocnee-Early Eocene climate changes in southwestern Wyoming: Paleobotanical analysis. Geological Society of American Bulletin, 112, 292–307.

    Article  Google Scholar 

  • Williamson, T. E., & Lucas, S. G. (1992). Stratigraphy and mammalian biostratigraphy of the Paleocene Nacimiento Formation, southern San Juan Basin, New Mexico. New Mexico Geological Society Guidebook, 43, 265–296.

    Google Scholar 

  • Wing, S. L. (1980). Fossil floras and plant-bearing beds of the central Bighorn Basin. In P. D. Gingerich (Ed.), Early Cenozoic Paleontology and Stratigraphy of the Bighorn Basin, Wyoming (Vol. 24, pp. 119–125). Museum of Paleontology The University of Michigan Papers on Paleontology.

    Google Scholar 

  • Wing, S. L., Harringoton, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., & Freeman, K. H. (2005). Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310, 993–996.

    Article  Google Scholar 

  • Wright, V. P., & Marriott, S. B. (1993). The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage. Sedimentary Geology, 86, 203–210.

    Article  Google Scholar 

  • Wright, V. P., Taylor, K. G., & Beck, V. H. (2000). The paleohydrology of Lower Cretaceous seasonal wetlands, Isle of Wight, Southern England. Journal of Sediment Research, 70, 619–632.

    Article  Google Scholar 

  • Yaalon, D. H., & Kalmar, D. (1978). Dynamics of cracking and swelling clay soils: displacement of skeletal grains, optimum depth of slickensides, and rate of intra-pedonic turbation. Earth Surface Processes, 3, 31–42.

    Article  Google Scholar 

  • Yin, A., & Ingersoll, R. V. (1997). A model for evolution of Laramide axial basins in the Southern Rocky Mountains, USA. International Geology Review, 39, 1113–1123.

    Article  Google Scholar 

  • Yonkee, W. A., Eleogram, B., Wells, M. L., Stockli, D. G., Kelley, S., & Barber, D. E. (2019). Fault slip and exhumation history of the Willard thrust sheet, Sevier fold-thrust belt, Utah: Relations to wedge propagation, hinterland uplift, and foreland basin sedimentation. Tectonics, 38, 2850–2893.

    Article  Google Scholar 

  • Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.

    Article  Google Scholar 

  • Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    Article  Google Scholar 

  • Zeebe, R. E., & Lourens, L. J. (2019). Solar system chaos and the Paleocene-Eocene boundary age constrained by geology and astronomy. Science, 365, 926–929.

    Article  Google Scholar 

Download references

Acknowledgements

L. Gipson, R. Reynolds, and D. Foreman are thanked for assistance with fieldwork. Funding for this study was partially provided by a National Geographic Society Research and Exploration Grant (#9867-16) to B.Z.F. and internal funds from Carleton College and Western Washington University to A.K.L., D.P.M., and B.Z.F. Part of this work was performed as a Visiting Fellow (D.P.M.) at the Institute for Rock Magnetism (IRM) at the University of Minnesota. The IRM is a US National Multi-user Facility supported through the Instrumentation and Facilities Division of the National Science Foundation, Earth Sciences Division, and by funding from the University of Minnesota. O. Lieber-Kotz, O. Laub, and A. Papajohn are thanked for assistance with magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brady Z. Foreman.

Ethics declarations

Conflict of interest

The authors declare no competing interests, financial or otherwise pertaining to this research and publication.

Additional information

Communicated by M. V. Alves Martins.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 162 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foreman, B.Z., Maxbauer, D.P., Lesko, A.K. et al. Floodplain evolution during the early Paleogene within the Piceance Creek Basin, northwest Colorado, U.S.A. J. Sediment. Environ. 7, 711–744 (2022). https://doi.org/10.1007/s43217-022-00117-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-022-00117-3

Keywords

Navigation