Skip to main content

Advertisement

Log in

Dolomitization and paleoenvironment of deposition of the Lower and Middle Rus Formation (Early Eocene, Dammam Dome, Eastern Saudi Arabia)

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Dammam Dome Formation (Eastern Saudi Arabia) consists of carbonate rocks ranging in age from Paleocene to Eocene. The Rus Formation (Early Eocene) comprises almost 56 m of mixed carbonate-evaporite succession and is exposed in the Dammam Dome area. The present study integrates detailed field, outcrop spectral gamma-ray logging, petrographic microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), and advanced geochemical studies to decipher the facies of Rus Formation, the boundary between its Lower and Middle parts, and its possible reservoir potential. Heterogeneity is present from the megascopic to microscopic scale in both the Lower and Middle Rus Formation. This heterogeneity in the formation in terms of facies distribution patterns mainly reflects both dynamic and static controls on it. The Rus Formation is exposed in the Dammam Dome area, this allows us the opportunity to map and build a framework in terms of lithology, elemental chemistry, mineralogy, and spectral gamma-ray response, to check the facies variation and heterogeneity. The shallow burial of the Rus Formation and post-deposition changes made the carbonate succession highly dolomitized. The dolomitization in the Lower and Middle Rus is dissimilar and should have been formed by various diagenetic fluids. The geochemical elemental signatures of Ca, Mg, Mn, Ti, P, Fe, Sr, Ba, S, Y, and Zr show a peak at the boundary of Middle to Lower Rus. The Spectral Gamma Ray [SGR (U, Th, and K)] and illustrates eight different flooding surfaces. Macro-vuggs to micropores exist in relatively tight considered Rus Formation. The Rus Formation is characterized by a high percentage of dolomitic limestone, dolomitized marl, shale, and dolomite intercalations and calcarenite. There is a robust distinction in stratigraphy, lithology, sedimentary structures, petrography, mineralogy, elemental composition between the Lower and Middle Rus. The Rus Formation is characterized by the high dominance of dolomite-dominated structures in the lagoonal to sabkha environment for this mixed carbonate-evaporitic unit. The six lithofacies were deposited in a lagoonal, shoal to a tidal flat depositional environment with the minor clastic influx. Finally, the study has also pointed to understand the cyclicity and paleoenvironmental conditions that can aid in equivalent stratigraphic sections in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

adopted from Aqrawi et al., 2006)

Similar content being viewed by others

Availability of data and materials

The data used in this manuscript can be obtained from the corresponding author upon reasonable request.

Notes

  1. A second version of this paper published in 1985 by U.S. Geological Survey.

  2. Carbonate grain content of coarse grained facies varies from 0 to 100% with many sand and gravel grade facies between 40 and 60% CaCO3. Existing nomenclature schemes pertain either to siliciclastic sediments (e.g. Folk 1980), or to carbonate sediments (e.g. Dunham 1962), and are not readily applicable to the mixed lithologies of the Rus Formation. To avoid confusion, carbonate-rich sand facies (≥ 50% CaCO3 grains) are referred to here as carbonate sand and carbonate-poor sand facies (≤ 50% CaCO3 grains) are referred to as siliciclastic sand (Haywick et al. 1992).

References

  • Abdullatif, O. M. (2010). Geomechanical properties and rock mass quality of the carbonate Rus formation, Dammam dome, Saudi Arabia. Arabian Journal for Science and Engineering, 35(2A), 173–197.

    Google Scholar 

  • Abotalib, A. Z., Heggy, E., Scabbia, G., & Mazzoni, A. (2019). Groundwater dynamics in fossil fractured carbonate aquifers in Eastern Arabian Peninsula: a preliminary investigation. Journal of Hydrology, 571, 460–470. https://doi.org/10.1016/j.jhydrol.2019.02.013.

    Article  Google Scholar 

  • Ahmad, F., Quasim, M. A., Ghaznavi, A. A., Khan, Z., & Ahmad, A. H. M. (2017). Depositional environment of the Fort Member of the Jurassic Jaisalmer Formation (western Rajasthan, India), as revealed from lithofacies and grain-size analysis. Geologica Acta, 15(3), 153–167. https://doi.org/10.1344/GeologicaActa2017.15.3.1.

    Article  Google Scholar 

  • Ahmad, F., Quasim, M. A., & Ahmad, A. H. M. (2021). Microfacies and diagenetic overprints in the limestones of Middle Jurassic Fort Member (Jaisalmer Formation), Western Rajasthan, India: Implications for the depositional environment, cyclicity, and reservoir quality. Geological Journal, 56(1), 130–151. https://doi.org/10.1002/gj.3945.

    Article  Google Scholar 

  • Al-Aasm, I. S., & Veizer, J. (1982). Chemical stabilization of low-Mg calcite: an example of brachiopods. Journal of Sedimentary Research, 52(4), 1101–1109. https://doi.org/10.1306/212F80E4-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Alam, M., Alam, M. M., Curray, J. R., Chowdhury, M. L. R., & Gani, M. R. (2003). An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. Sedimentary Geology, 155(3–4), 179–208. https://doi.org/10.1016/S0037-0738(02)00180-X.

    Article  Google Scholar 

  • Al-Awwad, S.F. (2013). High-resolution Sequence Stratigraphy of the Arab-D Reservoir, Khurais Field, Saudi Arabia. Doctoral dissertation, Curtin University.

  • Al-Fahmi, M., Michele, L. C., & Cole, J. C. (2014). Modeling of the Dammam outcrop fractures: Case study for fracture development in salt-cored structures. GeoArabia, 19(1), 49–80.

    Google Scholar 

  • Al-Hajari, S., & Kendall, C. S. (1992). The sedimentology of the Lower Eocene Rus Formation of Qatar and neighboring regions. Journal of the University of Kuwait, 19(15), 153–173.

    Google Scholar 

  • Ali, S.H. (2015). High-resolution stratigraphic architecture and sedimentological heterogeneity within the Miocene dam formation, Eastern Province, eastern Saudi Arabia. Master Dissertation, King Fahd University of Petroleum and Minerals.

  • Ali, S.H., Abdullatif, O., & Babalola, L.O. (2016). Sedimentary facies, sequence stratigraphy of mixed carbonate-siliciclastic sediments (early middle Miocene dam formation, eastern Saudi Arabia). In: International Conference and Exhibition, Barcelona, Spain, 3–6 April 2016. Society of Exploration Geophysicists and American Association of Petroleum Geologists, pp. 294–294 (Abstract Book). https://doi.org/10.1190/ice2016-6512273.1

  • Ali, S. H., Poppelreiter, M. C., Shah, M. M., & Saw, B. B. (2018a). Diagenetic understandings based on quantitative data, Miocene carbonate buildup, Offshore Sarawak Malaysis. Petroleum and Coal, 60(6), 1275–1282.

    Google Scholar 

  • Ali, S.H., Poppelreiter, M.C., Shah, M.M., Schlaich, M., & Saw, B.B. (2018b). Quantitative Comparison of Diagenesis in Two Miocene Carbonate Buildups, Central Luconia. In: Maximising Carbonate Asset Values through Collaboration and Innovative Solutions, 29–30 October 2018, Bintulu, Malaysia (Abstract Book).

  • Alkhaldi, F. M., Read, J. F., & Al-Tawil, A. A. (2020). Astronomically forced sequence development of terrestrial massive sand-sheet, inland sabkha and palustrine units, Lower Miocene Hadrukh Formation, eastern Saudi Arabia. Journal of African Earth Sciences, 171, 103914. https://doi.org/10.1016/j.jafrearsci.2020.103914.

    Article  Google Scholar 

  • Al-Saad, H. (2003). Facies analysis, cyclic sedimentation and paleoenvironment of the Middle Eocene Rus formation in qatar and adjoining areas. Carbonates and Evaporites, 18(1), 41–50. https://doi.org/10.1007/BF03178386.

    Article  Google Scholar 

  • Alsharhan, A. S., & Nairn, A. E. M. (1995). Tertiary of the Arabian Gulf: sedimentology and hydrocarbon potential. Palaeogeography, Palaeoclimatology, Palaeoecology, 114(2–4), 369–384. https://doi.org/10.1016/0031-0182(94)00089-Q.

    Article  Google Scholar 

  • Al-Shuhail, A. A., Hariri, M. M., & Makkawi, M. H. (2004). Using ground-penetrating radar to delineate fractures in the Rus formation, Dammam Dome Eastern Saudi Arabia. International Geology Review, 46(1), 91–96. https://doi.org/10.2747/0020-6814.46.1.91.

    Article  Google Scholar 

  • Amin, A. A., & Bankher, K. A. (1997). Karst Hazard Assessment of Eastern Saudi Arabia. Natural Hazards, 15(1), 21–30. https://doi.org/10.1023/A:1007918623324.

    Article  Google Scholar 

  • Andrew, A.S., Whitford, D.J., Hamilton, P.J., Scarano, S., & Buckley, M. (1996). Application of chemostratigraphy to petroleum exploration and field appraisal. An example from the Surat Basin. In: Proceedings of Seminar on Asia Pacific Oil and Gas, Adelaide, Australia, 28–31 October 1996. Society of Petroleum Engineers, 421–429 (Abstract Book). https://doi.org/10.2118/37008-MS

  • Aqrawi, A. A. M., Keramati, M., Ehrenberg, S. N., Pickard, N., Moallemi, A., Svånå, T., Darke, G., Dickson, J. A. D., & Oxtoby, N. H. (2006). The Origin of Dolomite in the Asmari Formation (Oligocene-Lower Miocene), Dezful Embayment, SW Iran. Journal of Petroleum Geology, 29(4), 381–402. https://doi.org/10.1111/j.1747-5457.2006.00381.x.

    Article  Google Scholar 

  • Arbuzov, S. I., Spears, D. A., Vergunov, A. V., Ilenok, S. S., Mezhibor, A. M., Ivanov, V. P., & Zarubina, N. A. (2019). Geochemistry, mineralogy and genesis of rare metal (Nb-Ta-Zr-Hf-Y-REE-Ga) coals of the seam XI in the south of Kuznetsk Basin Russia. Ore Geology Reviews, 113, 103073. https://doi.org/10.1016/j.oregeorev.2019.103073.

    Article  Google Scholar 

  • Azam, S. (2008). Engineering behavior of clay-bearing calcium sulphate in Dammam Dome, eastern Saudi Arabia. Bulletin of Engineering Geology and the Environment, 67(4), 521–528. https://doi.org/10.1007/s10064-008-0167-9.

    Article  Google Scholar 

  • Bramkamp, R. A., & Powers, R. W. (1958). Classifications of Arabian carbonate rocks. GSA Bulletin, 69(10), 1305–1318. https://doi.org/10.1130/0016-7606(1958)69[1305:COACR]2.0.CO;2.

    Article  Google Scholar 

  • Brand, U., & Veizer, J. (1980). Chemical diagenesis of a multicomponent carbonate system; 1, Trace elements. Journal of Sedimentary Research, 50(4), 1219–1236. https://doi.org/10.1306/212F7BB7-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Brand, U., Morrison, J.O., Campbell, I.T. (1998). Strontium in sedimentary rocks. In: C.P. Marshall, R.W. Fairbridge (Eds.), Geochemistry. Encyclopedia of Earth Science. Springer: Dordrecht. https://doi.org/10.1007/1-4020-4496-8_301

  • Cagatay, M. N. (1990). Palygorskite in the Eocene Rocks of the Dammam Dome Saudi Arabia. Clays and Clay Minerals, 38(3), 299–307. https://doi.org/10.1346/CCMN.1990.0380309.

    Article  Google Scholar 

  • Chahi, A., Duplay, J., & Lucas, J. (1993). Analyses of palygorskites and associated clays from the Jbel Rhassoul (Morocco): Chemical characteristics and origin of formation. Clays and Clay Minerals, 41(4), 401–411. https://doi.org/10.1346/CCMN.1993.0410401.

    Article  Google Scholar 

  • Choquette, P. W., & Pray, L. C. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54(2), 207–250. https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D.

    Article  Google Scholar 

  • Dill, H. G., Botz, R., Berner, Z., Stüben, D., Nasir, S., & Al-Saad, H. (2005). Sedimentary facies, mineralogy, and geochemistry of the sulphate-bearing Miocene Dam Formation in Qatar. Sedimentary Geology, 174(1–2), 63–96. https://doi.org/10.1016/j.sedgeo.2004.11.004.

    Article  Google Scholar 

  • Dinis, P.A., Garzanti, E., Hahn, A., Vermeesch, P., & Cabral-Pinto, M. (2020). Weathering indices as climate proxies. A step forward based on Congo and SW African river muds. Earth-Science Reviews201, 103039. https://doi.org/10.1016/j.earscirev.2019.103039

  • Dunham, R.T. (1962). Classification of carbonate rocks according to depositional texture. In: W.E. Ham (Ed.), Classification of Carbonate Rocks. American Association of Petroleum Geology Memoirs, 1, 108–121.

  • Dymond, J., Suess, E., & Lyle, M. (1992). Barium in deep sea sediments: a geochemical indicator of paleoproductivity. Paleoceanography and Paleoclimatology, 7(2), 163–181.

    Article  Google Scholar 

  • Ehrenberg, S. N., & Svana, T. A. (2001). Use of spectral gamma-ray signature to interpret stratigraphic surfaces in carbonate strata: An example from the Finnmark carbonate platform (Carboniferous-Permian), Barents Sea. AAPG Bulletin, 85(2), 295–308. https://doi.org/10.1306/8626C7C1-173B-11D7-8645000102C1865D.

    Article  Google Scholar 

  • Eltom, H., Abdullatif, O. M., Makkawi, M., & Yasin, M. (2013). Integration of spectral gamma-ray and geochemical analyses for the characterization of the upper Jurassic Arab-D carbonate reservoir: outcrop analogue approach, central Saudi Arabia. Petroleum Geoscience, 19(4), 399–415. https://doi.org/10.1144/petgeo2012-001.

    Article  Google Scholar 

  • Filippelli, G. M., & Delaney, M. L. (1994). The oceanic phosphorus cycle and continental weathering during Neogene. Paleoceanography and Paleoclimatology, 9(5), 643–652. https://doi.org/10.1029/94PA01453.

    Article  Google Scholar 

  • Flügel, E. (2004). Microfacies of carbonate rocks, analysis, interpretation and application. . Springer.

    Google Scholar 

  • Folk, R. L. (1980). Petrology of Sedimentology Rocks. . Hemphill Publishing Co.

    Google Scholar 

  • Ghon, G., Baechle, G., Rankey, E.C., Schlaich, M., Ali, S.H., Mokhtar, S., & Poppelreiter, M. (2018a). Carbonate Rock Physics and Sequence Stratigraphy in Central Luconia, Malaysia: Towards an Integrated Acoustic Facies for Partially Dolomitized Platforms. In: AAPG Annual Convention and Exhibition, Utah, USA. AAPG Search and Discovery (Article # 90323) (Abstract Book).

  • Ghon, G., Rankey, E.C., Baechle, G.T., Schlaich, M., Ali, S.H., Mokhtar, S., & Poppelreiter, M.C. (2018b). Carbonate Reservoir Characterisation of an Isolated Platform Integrating Sequence Stratigraphy and Rock Physics in Central Luconia. In: 80th EAGE Conference and Exhibition 2018. European Association of Geoscientists & Engineers, 1, 1–5 (Abstract Book). https://doi.org/10.3997/2214-4609.201800800

  • Gregg, J. M., & Sibley, D. F. (1984). Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Research, 54(3), 908–931. https://doi.org/10.1306/212F8535-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Guha, A. K., & Mukhopadhyay, T. J. (1996). Cretaceous-Paleocene Carbonate Microfacies of Tamil Nadu and Pondicherry. Journal of the Geological Society of India, 47(1), 115–127.

    Google Scholar 

  • Guo, H., Xiao, Y., Xu, L., Sun, H., Huang, J., & Hou, Z. (2017). Origin of allanite in gneiss and granite in the Dabie orogenic belt, Central East China. Journal of Asian Earth Sciences, 135, 243–256. https://doi.org/10.1016/j.jseaes.2016.12.017.

    Article  Google Scholar 

  • Hariri, M.M. (2006). Nature, affects, and possible causes of the rock fractures in the Dammam, Khobar and Dhahran cities, eastern Saudi Arabia. Gulf First Urban Planning and Development Conference, 20–22 February 2006, Kuwait (Abstract Book).

  • Hariri, M.M. (2007). Integration between GIS and Remote Sensing in the Geological Studies. In: 3rd Science Conference, 10–13 March 2007, Riyadh, KSA (Abstract Book).

  • Hariri, M. M. (2013). Fractures system within Dammam Dome and its relationship to the doming process, Eastern Saudi Arabia. Arabian Journal of Geosciences, 7(11), 4943–4956. https://doi.org/10.1007/s12517-013-1125-9.

    Article  Google Scholar 

  • Hariri, M.M., & Abdullatif, O.M. (2004a). Geological and engineering characterization of fractures and rock masses within Dammam Dome, Saudi Arabia. SABIC Project SABIC 2002–06, Final Report, 65 p.

  • Hariri, M.M., & Abdullatif, O.M. (2004b). Characterization of fractures within Dammam Dome, Saudi Arabia. In: GEO 2004 Conference, 7–10 March 2004, Manama, Bahrain. GeoArabia, 9(1), 76 (Abstract Book).

  • Hariri, M.M., & Abdullatif, O.M. (2005). Use of the GIS to delineate lineaments from Landsat images, Dammam Dome, Eastern Saudi Arabia. In: XXII International Cartographic Conference (ICC2005) La Coruña, Spain, 11–16 July 2005. International Cartographic Association (ICA-AC I) (Abstract Book).

  • Haywick, D. W., Carter, R. M., & Henderson, R. A. (1992). Sedimentology of 40 000 year Milankovitch-controlled cyclothems from central Hawke’s Bay, New Zealand. Sedimentology, 39(4), 675–696. https://doi.org/10.1111/j.1365-3091.1992.tb02144.x.

    Article  Google Scholar 

  • Hoppie, B., & Garrison, R. E. (2001). Miocene phosphate accumulation in the Cuyama basin, southern California. Marine Geology, 177(3–4), 353–380. https://doi.org/10.1016/S0025-3227(01)00169-4.

    Article  Google Scholar 

  • Kassem, A. A., Hussein, W. S., Radwan, A. E., Anani, N., Abioui, M., Jain, S., & Shehata, A. A. (2021). Petrographic and Diagenetic Study of Siliciclastic Jurassic Sediments from the Northeastern Margin of Africa: Implication for Reservoir Quality. Journal of Petroleum Science and Engineering, 200, 108340. https://doi.org/10.1016/j.petrol.2020.108340.

    Article  Google Scholar 

  • Keil, R. G., Tsamakis, E., Fuh, C. B., Giddings, J. C., & Hedges, J. I. (1994). Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT-fractionation. Geochimica et Cosmochimica Acta, 58(2), 879–893. https://doi.org/10.1016/0016-7037(94)90512-6.

    Article  Google Scholar 

  • Khan, Z., Quasim, M. A., Amir, M., & Ahmad, A. H. M. (2020). Provenance, tectonic setting, and source area weathering of Middle Jurassic siliciclastic rocks of Chari Formation, Jumara Dome, Kachchh Basin, Western India: Sedimentological, mineralogical, and geochemical constraints. Geological Journal, 55(5), 3537–3558. https://doi.org/10.1002/gj.3612.

    Article  Google Scholar 

  • Koptíková, L., Bábek, O., Hladil, J., Kalvoda, J., & Slavík, L. (2010). Stratigraphic significance and resolution of spectral reflectance logs in Lower Devonian carbonates of the Barrandian area, Czech Republic; a correlation with magnetic susceptibility and gamma-ray logs. Sedimentary Geology, 225(3–4), 83–98. https://doi.org/10.1016/j.sedgeo.2010.01.004.

    Article  Google Scholar 

  • Kuhnt, W., Holbourn, A. E., Beil, S., Aquit, M., Krawczyk, T., Flögel, S., & Jabour, H. (2017). Unraveling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin Morocco. Paleoceanography and Paleoclimatology, 32(8), 923–946. https://doi.org/10.1002/2017PA003146.

    Article  Google Scholar 

  • Kumar, A., Ratha, D. S., & Nandy, P. (1995). Chemical variations in the Tertiary carbonates of southwestern Kutch, Gujarat - a statistical approach. Journal of the Geological Society of India, 46(3), 295–301.

    Google Scholar 

  • Kumar, B., Sharma, S. D., Sreenivas, B., Dayal, A. M., Rao, M. N., Dubey, N., & Chawla, B. R. (2002). Carbon, oxygen and strontium isotope geochemistry of Proterozoic carbonate rocks of the Vindhyan basin Central India. Precambrian Research, 113(1–2), 43–63. https://doi.org/10.1016/S0301-9268(01)00199-1.

    Article  Google Scholar 

  • Lear, C. H., Elderfield, H., & Wilson, P. A. (2000). Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287(5451), 269–272. https://doi.org/10.1126/science.287.5451.269.

    Article  Google Scholar 

  • Li, Y., Zhang, T., Ellis, G. S., & Shao, D. (2017). Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 252–264. https://doi.org/10.1016/j.palaeo.2016.11.037.

    Article  Google Scholar 

  • Lu, Y., Jiang, S., Lu, Y., Xu, S., Shu, Y., & Wang, Y. (2019). Productivity or preservation? The factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale, South China. Marine and Petroleum Geology, 109, 22–35. https://doi.org/10.1016/j.marpetgeo.2019.06.007.

    Article  Google Scholar 

  • Lučić, D., & Bosworth, W. (2018). Regional Geology and Petroleum Systems of the Main Reservoirs and Source Rocks of North Africa. In: A. Bendaoud, Z. Hamimi, M. Hamoudi, S. Djemai, B. Zoheir (Eds), The Geology of the Arab World-An Overview (pp. 197–289). Cham: Springer. https://doi.org/10.1007/978-3-319-96794-3_6

  • Lyons, T. W., Werne, J. P., Hollander, D. J., & Murray, R. W. (2003). Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin Venezuela. Chemical Geology, 195(1–4), 131–157. https://doi.org/10.1016/S0009-2541(02)00392-3.

    Article  Google Scholar 

  • Machel, H. G., Cavell, P. A., & Patey, K. S. (1996). Isotopic evidence for carbonate cementation and recrystallization, and for tectonic expulsion of fluids into the Western Canada Sedimentary Basin. GSA Bulletin, 108(9), 1108–1119. https://doi.org/10.1130/0016-7606(1996)108%3C1108:IEFCCA%3E2.3.CO;2.

    Article  Google Scholar 

  • Maliva, R. G. (1987). Quartz geodes; early diagenetic silicified anhydrite nodules related to dolomitization. Journal of Sedimentary Research, 57(6), 1054–1059. https://doi.org/10.1306/212F8CE7-2B24-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Martin, E. E., & Macdougall, J. D. (1991). Seawater Sr isotopes at the Cretaceous/Tertiary boundary. Earth and Planetary Science Letters, 104(2–4), 166–180. https://doi.org/10.1016/0012-821X(91)90202-S.

    Article  Google Scholar 

  • Nagaraju, A., Suresh, S., Killham, K., & Hudson-Edwards, K. (2006). Hydrogeochemistry of waters of mangampeta barite mining area, Cuddapah Basin, Andhra Pradesh, India. Turkish Journal of Engineering and Environmental Sciences, 30(4), 203–219.

    Google Scholar 

  • Pearce, T. J., & Jarvis, I. (1991). Applications of geochemical data to modeling sediment dispersal patterns in distal turbidites: Late Quaternary of the Madeira abyssal plain. Journal of Sedimentary Research, 62(6), 1112–1129. https://doi.org/10.1306/D4267A64-2B26-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Pearce, T. J., Besly, B. M., Wray, D. S., & Wright, D. K. (1999). Chemostratigraphy: a method to improve interwell correlation in barren sequences—a case study using onshore Duckmantian/Stephanian sequences (West Midlands, UK). Sedimentary Geology, 124(1–4), 197–220. https://doi.org/10.1016/S0037-0738(98)00128-6.

    Article  Google Scholar 

  • Powers, R. W., Ramirez, L. F., Redmond, C. D., & Elberg, E. L., Jr. (1966). Geology of the Arabian Peninsula Sedimentary Geology of Saudi Arabia. U.S. Geological Survey Professional Paper, 560, 1–147.

    Google Scholar 

  • Probst, A., El Gh’mari, A., Aubert, D., Fritz, B., & McNutt, R. (2000). Strontium as a tracer of weathering processes in a silicate catchment polluted by acid atmospheric inputs, Strengbach, France. Chemical Geology, 170(1-4), 203-219. https://doi.org/10.1016/S0009-2541(99)00248-X

  • Ramkumar, M. (2008). Carbonate diagenesis in the Kallankurichchi Formation, Ariyalur Group, south India and its implications on petroleum prospects. Journal of the Geological Society of India, 71(3), 407–418.

    Google Scholar 

  • Rankey, E. C., Schlaich, M., Mokhtar, S., Ghon, G., Ali, S. H., & Poppelreiter, M. (2019). Seismic architecture of a Miocene isolated carbonate platform and associated off-platform strata (Central Luconia Province, offshore Malaysia). Marine and Petroleum Geology, 102, 477–495. https://doi.org/10.1016/j.marpetgeo.2019.01.009.

    Article  Google Scholar 

  • Raymo, M. E. (1994). The Himalayas, organic carbon burial, and climate in the Miocene. Paleoceanography and Paleoclimatology, 9(3), 399–404. https://doi.org/10.1029/94PA00289.

    Article  Google Scholar 

  • Robertson, A., & Degnan, P. (1998). Significance of modern and ancient oceanic Mn-rich hydrothermal sediments, exemplified by Jurassic Mn-cherts from Southern Greece. Geological Society, London, Special Publications, 148(1), 217–240. https://doi.org/10.1016/0031-0182(94)90109-0.

    Article  Google Scholar 

  • Rosli, R., Poppelreiter, M.C., Schlaich, M., Mubin, M., Ali, S.H., Jamaludin, S.N.F., & Saw, B.B. (2018). Integrated study of core, logs and seismic interpretation: Towards a relative sea level curve. In: National Geoscience Conference (NGC), Article#S8–64. Warta Geologi, 44(3), 185 (Abstract Book).

  • Ruffell, A. H., & Rawson, P. F. (1994). Paleoclimate control on sequence stratigraphic patterns in the Late Jurassic to Mid-Cretaceous, with a case study from eastern England. Palaeogeography, Palaeoclimatology, Palaeoecology, 10(1–2), 43–54. https://doi.org/10.1016/0031-0182(94)90109-0.

    Article  Google Scholar 

  • Ruffell, A., & Worden, R. (2000). Palaeoclimate analysis using spectral gamma-ray data from the Aptian (Cretaceous) of southern England and southern France. Palaeogeography, Palaeoclimatology, Palaeoecology, 155(3–4), 265–283. https://doi.org/10.1016/0031-0182(94)90109-0.

    Article  Google Scholar 

  • Salad Hersi, O. (2011). Lithologic and diagenetic attributes of the Sharwayn (Maastrichtian) and Umm Er Radhuma (late Paleocene-Eocene) formations and their significance to the KT unconformity, Jabal Samhan area, Dhofar, Sultanate of Oman. Arabian Journal of Geosciences, 4(1–2), 147–160. https://doi.org/10.1007/s12517-009-0105-6.

    Article  Google Scholar 

  • Sander, N. J. (1962). Aperçu paléontologique et stratigraphique du Paléogène en Arabie Saoudite orientale. Revue de Micropaléontologie, 5(1), 3–40.

    Google Scholar 

  • Sarg, J.F. (1988). Carbonate sequence stratigraphy. In C.K. Wilgus, B.S. Hastings, C.G.St.C. Kendall, H.W. Posamentier, C.A. Ross, & J.C. Van Wagoner (Eds.), Sea-Level Changes: an Integrated Approach. The Society of Economic Paleontologists and Mineralogists, Special Publication, 42, 155–181.

  • Saw, B.B., Poppelreiter, M., Vintaned, J.A.G., & Ali, S.H. (2017). Anatomy of an Isolated Carbonate Platform: Subis Limestone Outcrop, Early Miocene, Niah, Sarawak, Malaysia. In: 30th National Geoscience Conference & exhibition, Article#PDRG20–120. Warta Geologi, 43(3), 316 (Abstract Book).

  • Saw, B. B., Schlaich, M., Pöppelreiter, M. C., Ramkumar, M., Lunt, P., Vintaned, J. A. G., & Ali, S. H. (2019). Facies, depositional environments, and anatomy of the Subis build-up in Sarawak, Malaysia: implications on other Miocene isolated carbonate build-ups. Facies, 65(3), 28. https://doi.org/10.1007/s10347-019-0571-6.

    Article  Google Scholar 

  • Schnyder, J., Ruffell, A., Deconinck, J. F., & Baudin, F. (2006). Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, UK). Palaeogeography, Palaeoclimatology, Palaeoecology, 229(4), 303–320. https://doi.org/10.1016/j.palaeo.2005.06.027.

    Article  Google Scholar 

  • Sharland, P. R., Casey, D. M., Davies, R. B., Simmons, M. D., & Sutcliffe, O. E. (2004). Arabian plate sequence stratigraphy-revisions to SP2. GeoArabia, 9(1), 199–214.

    Google Scholar 

  • Singh, I. B. (1978). Microfacies, petrography and mineralogy of the Tertiary rocks of Guvar Nala near Narain Sarovar, Kutch, India and their palaeoecological significance. Journal of the Palaeontological Society of India, 21–22, 78–95.

    Google Scholar 

  • Singh, P., & Rajamani, V. (2001). REE geochemistry of recent clastic sediments from the Kaveri floodplains, southern India: implication to source area weathering and sedimentary processes. Geochimica et Cosmochimica Acta, 65(18), 3093–3108. https://doi.org/10.1016/S0016-7037(01)00636-6.

    Article  Google Scholar 

  • Srinivasan, M. S. (1989). Recent advances in Neogene planktonic foraminiferal biostratigraphy, chemostratigraphy and paleoceanography, Northern Indian Ocean. Journal of Palaeontological Society of India, 34, 1–18.

    Google Scholar 

  • Steineke, M., Bramkamp, R. A., & Sander, N. J. (1958). Stratigraphic relations of Arabian Jurassic oil: Middle East. In L. G. Weeks (Ed.), Habitat of Oil: A Symposium. (pp. 1294–1329). American Association of Petroleum Geologists.

    Google Scholar 

  • Steinhauff, D.M., Heine, C.J., & Gregory, A.E. (2011). The Eocene Rus Anhydrite: Important Arabian Reflector and Recorder of Cenozoic History. In: AAPG and AAPG European Region Conference, Athens, Greece. AAPG Search and Discovery (Article #50480) (Abstract Book).

  • Tappan, H. (1968). Primary production, isotopes, extinctions and the atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology, 4(3), 187–210. https://doi.org/10.1016/0031-0182(68)90047-3.

    Article  Google Scholar 

  • Thralls, H.W., & Hasson, R.C. (1956). Geology and oil resources of eastern Saudi Arabia. In: Intern. Geol. Cong. 20th, Mexico. Symposium Sobre Yacimentos de Petroleoy Gas, 2, 9–32.

  • Tleel, J. W. (1973). Surface Geology of Dammam Dome, Eastern Province, Saudi Arabia. AAPG Bulletin, 57(3), 558–576. https://doi.org/10.1306/819A4304-16C5-11D7-8645000102C1865D.

    Article  Google Scholar 

  • Trueman, C. N., Behrensmeyer, A. K., Tuross, N., & Weiner, S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science, 31(6), 721–739. https://doi.org/10.1016/j.jas.2003.11.003.

    Article  Google Scholar 

  • Van Santvoort, P. J. M., De Lange, G. J., Thomson, J., Cussen, H., Wilson, T. R. S., Krom, M. D., & Ströhle, K. (1996). Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean Sea. Geochimica et Cosmochimica Acta, 60(21), 4007–4024. https://doi.org/10.1016/S0016-7037(96)00253-0.

    Article  Google Scholar 

  • Verdel, C., Wernicke, B.P., Hassanzadeh, J., & Guest, B. (2011). A Paleogene extensional arc flare-up in Iran. Tectonics, 30(3), TC3008. https://doi.org/10.1029/2010TC002809

  • Wadood, B., Khan, S., Liu, Y., Li, H., & Rahman, A. (2020). Investigating the impact of diagenesis on reservoir quality of the Jurassic shallow shelfal carbonate deposits: Kala Chitta Range, North Pakistan. Geological Journal, 56(2), 1167–1186. https://doi.org/10.1002/gj.3968.

    Article  Google Scholar 

  • Walls, R. A., Ragland, P. C., & Crisp, E. L. (1977). Experimental and natural early diagenetic mobility of Sr and Mg in biogenic carbonates. Geochimica et Cosmochimica Acta, 41(12), 1731–1737. https://doi.org/10.1016/0016-7037(77)90204-6.

    Article  Google Scholar 

  • Warzeski, E. R., Cunningham, K. J., Ginsburg, R. N., Anderson, J. B., & Ding, Z. (1996). A Neogene mixed siliciclastic and carbonate foundation for the Quaternary carbonate shelf, Florida Keys. Journal of Sedimentary Research, 66(4), 788–800. https://doi.org/10.1306/D426840A-2B26-11D7-8648000102C1865D.

    Article  Google Scholar 

  • Weijermars, R. (1999). Surface Geology, Lithostratigraphy and Tertiary Growth of the Dammam Dome, Saudi Arabia: A New Field Guide. GeoArabia, 4(2), 199–226.

    Google Scholar 

  • Yasin, Q., Baklouti, S., Khalid, P., Ali, S. H., Boateng, C. D., & Du, Q. (2021). Evaluation of Shale Gas Reservoirs in Complex Structural Enclosures: A case study from Patala Formation in the Kohat-Potwar Plateau, Pakistan. Journal of Petroleum Science and Engineering, 198, 108225. https://doi.org/10.1016/j.petrol.2020.108225.

    Article  Google Scholar 

  • Zaineldeen, U., & Fowler, A. R. (2014). Structural style and fault kinematics of the Lower Eocene Rus Formation at Jabal Hafit area, Al Ain, United Arab Emirates (UAE). Arabian Journal of Geosciences, 7(3), 1115–1125. https://doi.org/10.1007/s12517-013-0908-3.

    Article  Google Scholar 

  • Ziegler, M. A. (2001). Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia, 6(3), 445–504.

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the King Fahd University of Petroleum and Minerals, Saudi Arabia for providing the support and data contained in this research work. We thank Professor Maria Virgínia Alves Martins (Editor-in-Chief, Journal of Sedimentary Environments), Dr. Bilal Wadood (University of Swabi, Pakistan), and an anonymous reviewer who provided critical helpful comments and suggestions to our manuscript; nevertheless, we take full responsibility for our interpretation. The authors are much obliged to the Springer proofreading team for handling the work, sending reviews, and preparing the proof.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Syed Haroon Ali: Writing – original draft, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing – review & editing. Osman M. Abdullatif: Supervision, Writing – original draft, Validation, Writing – review & editing. Mohamed Abioui: Writing – original draft, Validation, Writing – review & editing. Yasir Bashir: Writing – original draft, Validation, Writing – review & editing. Ali Wahid: Writing – original draft, Validation, Writing – review & editing. Qamar Yasin: Validation, Writing – original draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Syed Haroon Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. V. Alves Martins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.H., Abdullatif, O.M., Abioui, M. et al. Dolomitization and paleoenvironment of deposition of the Lower and Middle Rus Formation (Early Eocene, Dammam Dome, Eastern Saudi Arabia). J. Sediment. Environ. 6, 267–285 (2021). https://doi.org/10.1007/s43217-021-00057-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-021-00057-4

Keywords

Navigation