Skip to main content
Log in

Enhanced thermoelectric performance of TiS2 via large thermal conductivity reduction by solid solution alloying with TiSe2

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

TiS2 is a transition metal dichalcogenide with semiconducting transport properties, and is considered a potential thermoelectric material owing to its relatively low lattice thermal conductivity originated from van der Waals stacking. In this study, the evolution of electrical and thermal transport properties of TiS2 by solid solution alloying with TiSe2 are investigated systematically regarding thermoelectric properties. A series of solid solution compositions of Ti(S1 − xSex)2 (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) polycrystalline samples was synthesized by a conventional solid-state reaction, wherein no secondary phase was formed. As x increased, the electrical conductivity and carrier concentration gradually increased, while the Seebeck coefficient decreased. Consequently, the power factor decreased. On the other hand, the lattice thermal conductivity is reduced largely to 0.96 W/mK for x = 0.5 at 300 K, compared to 2.3 W/mK for the pristine TiS2 sample. Consequently, the thermoelectric figure of merit zT of TiS2 was enhanced by solid solution allying with TiSe2, despite deterioration of the electrical transport properties. The maximum zT of 0.41 was observed for x = 0.4 (Ti(S0.6Se0.4)2) at 500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available upon reasonable request.

References

  1. L.E. Bell, Science. 321, 1457–1461 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. F.J. DiSalvo, Science. 285, 703–706 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. 93, 7436–7439 (1996)

  4. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  5. B. Akenoun, S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, A. Benyoussef, J. Korean Ceram. Soc. 59, 715–728 (2022)

    Article  CAS  Google Scholar 

  6. Y. Pei, A.D. LaLonde, N.A. Heinz, G.J. Snyder, Adv. Energy Mater. 2, 670–675 (2012)

    Article  CAS  Google Scholar 

  7. D.H. Kim, H.-S. Kim., J.U. Rahman, W.H. Shin, T. Kim, S.-. Kim, J. Korean Ceram. Soc. 59, 64–69 (2022)

    Article  CAS  Google Scholar 

  8. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Adv. Mater. 29, 1605884 (2017)

    Article  Google Scholar 

  9. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew Chem. 48, 8616–8639 (2009)

    Article  CAS  Google Scholar 

  10. M. Pumera, Z. Sofer, A. Ambrosi, J. Mater. Chem. A 2, 8981–8987 (2014)

    Article  CAS  Google Scholar 

  11. M. Beaumale, T. Barbier, Y. Breard, S. Hebert, Y. Kinemuchi, E. Guilmeau, J. Appl. Phys. 115, 043704 (2014)

    Article  ADS  Google Scholar 

  12. L.F. Mattheiss, Phys. Rev. B 8, 3719 (1973)

    Article  CAS  ADS  Google Scholar 

  13. M. Abdulsalam, E. Rugut, D.P. Joubert, Mater. Today Commun. 25, 101434 (2020)

    Article  CAS  Google Scholar 

  14. T.M. Herninda, C.H. Ho, Crystals. 10, 327 (2020)

    Article  CAS  Google Scholar 

  15. S. Zhao, T. Hotta, T. Koretsune, K. Watanabe, T. Taniguchi, K. Sugawara, T. Takahashi, H. Shinohara, R. Kitara, 2D Mater. 3, 025027 (2016)

    Article  Google Scholar 

  16. J. Martincová, M. Otyepka, P. Lazar, 2D Mater. 7, 045005 (2020)

    Article  Google Scholar 

  17. R.R. Chianelli, J.C. Scanlon, A.H. Thompson, Mater. Res. Bull. 10, 1379–1382 (1975)

    Article  CAS  Google Scholar 

  18. C. Bourgès, T. Barbier, G. Guelou, P. Vaqueiro, A.V. Powell, O.I. Lebedev, N. Barrier, Y. Kinemuchi, E. Guilmeau, J. Eur. Ceram. Soc. 36, 1183–1189 (2016)

    Article  Google Scholar 

  19. T. Barbier, O.I. Lebedev, V. Roddatis, Y. Breard, A. Maignan, E. Guilmeau, Dalton Trans. 44, 7887–7895 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. D. Li, X.Y. Qin, J. Zhang, H.J. Li, Phys. Lett. A 348, 379–385 (2006)

    Article  CAS  ADS  Google Scholar 

  21. H. Imai, Y. Shimakawa, Y. Kubo, Phys. Rev. B 64, 241104 (2001)

    Article  ADS  Google Scholar 

  22. G. Guélou, P. Vaqueiro, J.P. Gonjal, T. Barbier, S. Hebert, E. Guilmeau, W. Kockelmannm, A.V. Powell, J. Mater. Chem. C 4, 1871–1880 (2016)

    Article  Google Scholar 

  23. E. Guilmeau, Y. Bréard, A. Maignan, Appl. Phys. Lett. 99, 052107 (2011)

    Article  ADS  Google Scholar 

  24. E. Guilmeau, T. Barbier, A. Maignan, D. Chateigner, Appl. Phys. Lett. 111, 133903 (2017)

    Article  ADS  Google Scholar 

  25. F. Gascoin, N. Raghavendra, E. Guilmeau, Y. Breard, J. Alloys Compd. 521, 121–125 (2012)

    Article  CAS  Google Scholar 

  26. M. Beaumale, T. Barbier, Y. Breard, B. Raveau, Y. Kinemuchi, R. Funahashi, E. Guilmeau, J. Electron. Mater. 43, 1590 (2014)

    Article  CAS  ADS  Google Scholar 

  27. M. Zhang, C. Zhang, Y. You, H. Xie, H. Chi, Y. Sun, W. Liu, X. Su, Y. Yan, X. Tang, C. Uher, ACS Appl. Mater. 10, 32344 (2018)

    Article  CAS  Google Scholar 

  28. H.J. Goldsmid, J.W. Sharp, J. Electron. Mater. 28, 869 (1999)

    Article  CAS  ADS  Google Scholar 

  29. G.J. Snyder, A.H. Snyder, M. Wood, R. Gurunathan, B.H. Snyder, C. Niu, Adv. Mater. 32, 2001537 (2020)

    Article  CAS  Google Scholar 

  30. K.H. Lee, S.I. Kim, J.C. Lim, J.Y. Cho, H. Yang, H.S. Kim, Adv. Funct. Mater. 32, 2203852 (2022)

    Article  CAS  Google Scholar 

  31. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 4 (2015)

    Google Scholar 

  32. K.H. Lee, Y.M. Kim, C.O. Park, W.H. Shin, S.W. Kim, H.S. Kim, S.I. Kim, Mater. Taody Energy. 21, 100795 (2021)

    CAS  Google Scholar 

  33. O. Park, S.W. Lee, S.J. Park, S.I. Kim, Micromachines. 13, 2066 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the National Research Foundation of Korea (NRF2021R1A5A8033165). This study was supported by the Nano·Material Technology Development Program under the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2022M3H4A1A04076667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-il Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Roh, J.W., Park, J. et al. Enhanced thermoelectric performance of TiS2 via large thermal conductivity reduction by solid solution alloying with TiSe2. J. Korean Ceram. Soc. 61, 335–341 (2024). https://doi.org/10.1007/s43207-024-00368-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-024-00368-y

Keywords

Navigation