Skip to main content
Log in

First-principles calculations to investigate structural, optoelectronic and thermoelectric properties of Sn-based halide perovskites: CsSnCl3 and CH3NH3SnCl3

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The structural, electronic, optical and thermoelectric properties of inorganic CsSnCl3 and organic–inorganic CH3NH3SnCl3 cubic perovskites have been calculated using first-principles calculations. Structural properties were studied using the generalized gradient approximation (GGA) of the Perdew Burke Ernzerhof (PBE) function. Electronic calculations such as density of states (DOS) and band structures (BS) reveal that inorganic CsSnCl3 and organic–inorganic CH3NH3SnCl3 perovskites exhibit direct band gaps of 1.15 eV and 1.98 eV, respectively. The results of optical properties such as optical absorption show that the studied materials have high light absorption in the visible region. In addition, the effects of temperature on thermoelectric parameters such as Seebeck coefficient, electronic figure of merit, electrical and electronic thermal conductivities, power factor and figure of merit were calculated and discussed. This theoretical study of electronic, optical and thermoelectric properties could make inorganic CsSnCl3 and organic–inorganic CH3NH3SnCl3 perovskite materials potential candidates for optoelectronic applications energy conversion technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.B. De la Mora, O. Amelines-Sarria, B.M. Monroy, C.D. Hernández-Pérez, J.E. Lugo, Materials for down conversion in solar cells: perspectives and challenges. Sol. Energy Mater. Sol. Cells 165, 59–71 (2017)

    Article  Google Scholar 

  2. Z. Pan, Q. Liu, L. Zhang, J. Zhou, C. Zhang, S.H. Chan, Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode. Appl. Energy 191, 559–567 (2017)

    Article  CAS  Google Scholar 

  3. C.S. Ponseca Jr., P. Chábera, J. Uhlig, P. Persson, V. Sundstrom, Ultrafast electron dynamics in solar energy conversion. Chem. Rev. 117, 10940–11024 (2017)

    Article  CAS  Google Scholar 

  4. W. Zhang, G.E. Eperon, H.J. Snaith, Metal halide perovskites for energy applications. Nat. Energy 1, 1–8 (2016)

    Article  Google Scholar 

  5. W.J. Yin, T. Shi, Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014)

    Article  CAS  Google Scholar 

  6. K.P. Marshall, M. Walker, R.I. Walton, R.A. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1(12), 1–9 (2016)

    Article  Google Scholar 

  7. R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino, J.B. Patel, H.J. Snaith, Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016)

    Article  Google Scholar 

  8. J.B. Hoffman, A.L. Schleper, P.V. Kamat, Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3–x through halide exchange. J. Am. Chem. Soc. Am. Chem. Soc. 138, 8603–8611 (2016)

    Article  CAS  Google Scholar 

  9. L.-Y. Huang, W.R. Lambrecht, Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si. Phys. Rev. B 93, 195211 (2016)

    Article  Google Scholar 

  10. Q.A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, L. Manna, Strongly emissive perovskite nanocrystal inks for highvoltage solar cells. Nat. Energy 2, 1–7 (2016)

    Article  CAS  Google Scholar 

  11. G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. 3, 19688–19695 (2015)

    Article  CAS  Google Scholar 

  12. T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3, 23829–23832 (2015)

    Article  CAS  Google Scholar 

  13. P. Ramasamy, D.H. Lim, B. Kim, S.H. Lee, M.S. Lee, J.S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52, 2067–2070 (2016)

    Article  CAS  Google Scholar 

  14. Y. Selmani, H. Labrim, S. Ziti, L. Bahmad, Ectronic, optical and thermoelectric properties of the CsMF3 (M = Si or Ge) fluoro-perovskites. Comput. Condens. Matter 32, e00699 (2022)

    Article  Google Scholar 

  15. Y. Selmani, H. Labrim, M. Mouatassime, L. Bahmad, Structural, optoelectronic and thermoelectric properties of Cs-based fluoroperovskites CsMF3 (M = Ge, Sn or Pb). Mater. Sci. Semicond. Process. 152, 107053 (2022)

    Article  CAS  Google Scholar 

  16. M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017)

    Article  CAS  Google Scholar 

  17. J. Chen, S. Zhou, S. Jin, H. Li, T. Zhai, Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C 4, 11–27 (2016)

    Article  CAS  Google Scholar 

  18. M. Roknuzzaman, K. Ostrikov, K. Chandula Wasalathilake, C. Yan, H. Wang, T. Tesfamichael, Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: a first-principles study. Org. Electron. 59, 99–106 (2018)

    Article  CAS  Google Scholar 

  19. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  20. Y. Zhao, H. Tan, H. Yuan, Z. Yang, J.Z. Fan, J. Kim, O. Voznyy, X. Gong, L.N. Quan, C.S. Tan, J. Hofkens, D. Yu, Q. Zhao, E.H. Sargent, Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9, 1607 (2018)

    Article  Google Scholar 

  21. N. Arora, S. Orlandi, M.I. Dar, S. Aghazada, G. Jacopin, M. Cavazzini, E. Mosconi, P. Gratia, F. De Angelis, G. Pozzi, M. Graetzel, M.K. Nazeeruddin, High open-circuit voltage: fabrication of formamidinium lead bromide perovskite solar cells using fluorene-dithiophene derivatives as hole-transporting materials. ACS Energy Lett. 1, 107–112 (2016)

    Article  CAS  Google Scholar 

  22. D.M. Jang, D.H. Kim, K. Park, J. Park, J.W. Lee, J.K. Song, Ultrasound synthesis of lead halide perovskite nanocrystals. J. Mater. Chem. C 4, 10625–10629 (2016)

    Article  CAS  Google Scholar 

  23. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, NH2CH ═ NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014)

    Article  CAS  Google Scholar 

  24. T. Jesper Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9, 1706–1724 (2016)

    Article  CAS  Google Scholar 

  25. N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014)

    Article  CAS  Google Scholar 

  26. S.J. Lee, S.S. Shin, J. Im, T.K. Ahn, J.H. Noh, N.J. Jeon, S.I. Seok, J. Seo, Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells. ACS Energy Lett. 3, 46–53 (2018)

    Article  CAS  Google Scholar 

  27. T. Shi, H.-S. Zhang, W. Meng, Q. Teng, M. Liu, X. Yang, Y. Yan, H.-L. Yip, Y.-J. Zhao, Effects of organic cations on the defect physics of tin halide perovskites. J. Mater. Chem. A 5, 15124–15129 (2017)

    Article  CAS  Google Scholar 

  28. M. Roknuzzaman, K. Ostrikov, H. Wang, A. Du, T. Tesfamichael, Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci. Rep. 7, 14025 (2017)

    Article  Google Scholar 

  29. M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, I. Ahmad, Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications. J. Alloys Compd. 705, 828–839 (2017)

    Article  CAS  Google Scholar 

  30. S. Idrissi, S. Ziti, H. Labrim, L. Bahmad, Band gaps of the solar perovskites photovoltaic CsXCl3 (X = Sn, Pb or Ge). Mater. Sci. Semicond. Process. 122, 105484 (2021)

    Article  CAS  Google Scholar 

  31. J. Qian, B. Xu, W. Tian, A comprehensive theoretical study of halide perovskites ABX3. Org. Electron. 37, 61–73 (2016)

    Article  CAS  Google Scholar 

  32. M.M. Zaman, M. Imran, A. Saleem, A.H. Kamboh, M. Arshad, N.A. Khan, P. Akhter, Potassium doped methylammonium lead iodide (MAPbI3) thin films as a potential absorber for perovskite solar cells; structural, morphological, electronic and optoelectric properties. Phys. B: Condens. 522, 57–65 (2017)

    Article  Google Scholar 

  33. N. Gopinathan, S.S. Basha, I.B. Shameem Banu, M.H. Mamat, M.M.S. Sirajudeen, Solvents driven structural, morphological, optical and dielectric properties of lead-free perovskite CH3NH3SnCl3 for optoelectronic applications: experimental and DFT study. Mater. Res. Express. 6, 125921 (2020)

    Article  Google Scholar 

  34. C. Han, Z. Li, S. Dou, Recent progress in thermoelectric materials. J. Chin. Sci. Bull. 59, 2073–2091 (2014)

    Article  CAS  Google Scholar 

  35. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  36. C.R. Sankar, A. Assoud, H. Kleinke, New layered-type quaternary chalcogenides, Tl2PbMQ4 (M = Zr, Hf; Q = S, Se): structure, electronic structure, and electrical transport properties. Inorg. Chem. 52, 13869–13874 (2013)

    Article  CAS  Google Scholar 

  37. Q. Mahmood, M. Yaseen, B.U. Haq, A. Laref, A. Nazir, The study of mechanical and thermoelectric behavior of MgXO3 (X = Si, Ge, Sn) for energy applications by DFT. Chem. Phys. 524, 106–112 (2019)

    Article  CAS  Google Scholar 

  38. R. Sharma, A. Dey, S.A. Dar, V. Srivastava, A DFT investigation of CsMgX3 (X = Cl, Br) halide perovskites: electronic, thermoelectric and optical properties. Comput. Theor. Chem. 1204, 113415 (2021)

    Article  CAS  Google Scholar 

  39. M. Yaseen, H. Shafiq, J. Iqbal, F. Batool, A. Murtaza, M. Iqbal, A. Mahmood, Pressure induced electronic, optical and thermoelectric properties of cubic SrZrO3: DFT investigation. Phys. B: Condens. 612, 412626 (2021)

    Article  CAS  Google Scholar 

  40. P.A. Nawaz, G.M. Mustafa, S.S. Iqbal, N.A. Noor, T.S. Ahmad, A. Mahmood, R. Neffati, Theoretical investigations of optoelectronic and transport properties of Rb2YInX6 (X = Cl, Br, I) double perovskite materials for solar cell applications. Sol. Energy 231, 586–592 (2022)

    Article  Google Scholar 

  41. Y.S. Wudil, Q. Peng, A.Q. Alsayoud, M.A. Gondal, Hydrostatic pressure-tuning of thermoelectric properties of CsSnI3 perovskite by first-principles calculations. Comput. Mater. Sci. 201, 110917 (2022)

    Article  CAS  Google Scholar 

  42. A. Shukla, V.K. Sharma, S.K. Gupta, A.S. Verma, Computational determination of the physical-thermoelectric parameters of tin-based organomatallic halide perovskites (CH3NH3SnX3, X = Br and I): emerging materials for optoelectronic devices. Mater. Chem. Phys. 253, 123389 (2020)

    Article  CAS  Google Scholar 

  43. Q. Mahmood, B.U. Haq, M. Yaseen, S.M. Ramay, M.G.B. Ashiq, A. Mahmood, The first principle study of mechanical, optical and thermoelectric properties of SnZrO3 and SnHfO3 for renewable energy applications. Solid State Commun. 292, 17–23 (2019)

    Article  CAS  Google Scholar 

  44. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, D.C. Allan, First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002)

    Article  Google Scholar 

  45. ABINIT software web site. https://www.abinit.org. Accessed 30 Oct 2023

  46. X. Gonze, A brief introduction to the ABINIT software package. Fur Krist. - Cryst. Mater. 220, 558–562 (2005)

    Article  CAS  Google Scholar 

  47. P. Honenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  48. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  49. J.P. Perdew, K. Burke, M. Ernzerhof, generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  50. A.H. Reshak, S. Auluck, Thermoelectric properties of Nowotny-Juza NaZnX (X = P, As and Sb) compounds. Comput. Mater. Sci. 96, 90–95 (2015)

    Article  CAS  Google Scholar 

  51. H. Peng, C.L. Wang, J.C. Li, R.Z. Zhang, H.C. Wang, Y. Sun, Theoretical investigation of the thermoelectric transport properties of BaSi2. Phys. B: Condens. 20, 046103 (2011)

    Google Scholar 

  52. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Transport coefficient from first-principles calculations. Phys. Rev. B 68, 125210 (2003)

    Article  Google Scholar 

  53. G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  CAS  Google Scholar 

  54. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  CAS  Google Scholar 

  55. R. Padmavathy, A. Amudhavalli, M. Manikandan, R. Rajeswarapalanichamy, K. Iyakutti, A.K. Kushwaha, Electronic and optical properties of CsSnI3− yCly (y = 0, 1, 2, 3) perovskites: a DFT Study. J. Electron. Mater. 48, 1243–1251 (2019)

    Article  CAS  Google Scholar 

  56. J.U. Rehman, M. Usman, S. Amjid, First-principles calculations to investigate structural, electronics, optical and elastic properties of Sn-based inorganic halide-perovskites CsSnX3 (X = I, Br, Cl) for solar cell applications. Comput. Theor. Chem. 1209, 113624 (2022)

    Article  Google Scholar 

  57. Li. Lang, J.-H. Yang, H.-R. Liu, First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Phys. Lett. A 378, 290–293 (2014)

    Article  CAS  Google Scholar 

  58. Y. Yuan, R. Xu, H.T. Xu, F. Hong, F. Xu, L.J. Wang, Nature of the band gap of halide perovskites ABX3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): first-principles calculations. Chin. Phys. B 24, 116302 (2015)

    Article  Google Scholar 

  59. J. Barrett, S.R.A. Bird, J.D. Donaldson, J. Silver, The Mössbauer effect in tin (II) compounds. Part XI. The spectra of cubic trihalogenostannates (II). J. Chem. Soc. A 1971, 3105–3108 (1971)

    Article  Google Scholar 

  60. F. Chiarella, A. Zappettini, F. Licci, Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X = Cl, Br). Phys. Rev. B 77, 045129 (2008)

    Article  Google Scholar 

  61. N. Pandech, T. Kongnok, N. Palakawong, S. Limpijumnong, W.R. Lambrecht, S. Jungthawan, Effects of the van der Waals interactions on structural and electronic properties of CH3NH3(Pb, Sn)(I, Br, Cl)3 halide perovskites. ACS Omega 5, 25723–25732 (2020)

    Article  CAS  Google Scholar 

  62. L. Peedikakkandy, P. Bhargava, Composition dependent optical, structural and photoluminescence characteristics of cesium tin halide perovskites. RSC Adv. 6, 19857–19860 (2016)

    Article  CAS  Google Scholar 

  63. Y. Selmani, H. Labrim, R. El Bouayadi, L. Bahmad, Effects of Mg doping on physical properties of zinc-blende mercury selenide HgSe compound. Phys. B: Condens. 644, 414204 (2022)

    Article  CAS  Google Scholar 

  64. H. Labrim, Y. Selmani, S. Ziti, S. Idrissi, R. El Bouayadi, D. Zejli, L. Bahmad, Study of the perovskites CaZrO3-xSx (x = 0, 1, 2 and 3) for photovoltaic applications. Solid State Commun. 363, 115105 (2023)

    Article  CAS  Google Scholar 

  65. Y. Selmani, H. Labrim, A. Jabar, L. Bahmad, Thermoelectric properties of Mg-doped mercury selenide HgSe. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S021797922450334X

    Article  Google Scholar 

  66. L.Z. Wang, Y.Q. Zhao, B. Liu, L.J. Wu, M.Q. Cai, First-principles study of photovoltaics and carrier mobility for non-toxic halide perovskite CH3NH3SnCl3: theoretical prediction. Chem. Chem. Phys. 18, 22188–22195 (2016). https://doi.org/10.1039/C6CP03605H

    Article  CAS  Google Scholar 

  67. G.J. Snyder, S.T. Eric, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  68. L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Selmani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmani, Y., Labrim, H. & Bahmad, L. First-principles calculations to investigate structural, optoelectronic and thermoelectric properties of Sn-based halide perovskites: CsSnCl3 and CH3NH3SnCl3. J. Korean Ceram. Soc. 61, 189–200 (2024). https://doi.org/10.1007/s43207-023-00336-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00336-y

Keywords

Navigation