Skip to main content
Log in

Systematic analysis of TiO2 compact layer effect on the performance of dye-sensitized solar cells

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Prevention of the charge recombination at the photoelectrode is an important consideration in performance improvement of dye-sensitized solar cells (DSSCs). TiO2 as a compact layer was deposited on the fluorine-doped tin oxide (FTO)/glass substrate by using a TiCl4 aqueous solution in this study. The deposited TiO2 compact layer films fired at fired at 500 °C for 30 min were formed as a crystalline anatase phase with stoichiometry. The surface coverage and thickness of the TiO2 compact layer increased as the TiCl4 treatment time increased. The TCL30 sample treated for 30 min showed higher open-circuit voltage (0.739 V), a higher short-circuit current density (10.398 mA/cm2), and a greater fill factor (68.22) with higher power-conversion efficiency (5.237%) than the bare cell without a compact layer. Especially, the TCL30 sample exhibited a 17% increase in photo conversion efficiency compared with the bare cell. The TCL30 sample also showed the lowest dark current density and longest electron lifetime, which indicates effective suppression of the charge recombination. Meanwhile, based on the study of the patterned-TiO2 compact layers, it was found that the charge recombination via FTO might be the predominant loss mechanism rather than the TiO2 route. The cell with less surface area of the FTO/electrolyte interface showed better performance. Consequently, it was found that the surface area of the FTO/electrolyte interface should be decreased to improve the performance of DSSCs by minimizing the charge recombination via FTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Dhonde, K. Sahu, M. Das, A. Yadav, P. Ghosh, V.V.S. Murty, Review-recent advancements in dye-sensitized solar cells; from photoelectrode to counter electrode. J. Electrochem. Soc. 169, 066507 (2022)

    Article  CAS  Google Scholar 

  2. F. Babar, U. Mehmood, H. Asghar, M.H. Mehdi, A.U.H. Khan, H. Khalid, N. Huda, Z. Fatima, Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: a comprehensive review. Renew. Sustain. Energy Rev. 129, 109919 (2020)

    Article  CAS  Google Scholar 

  3. X. Wang, B. Zhao, W. Kan, Y. Xie, K. Pan, Review on low-cost counter electrode materials for dye-sensitized solar cells. Adv. Mater. Interfaces 9, 2101229 (2022)

    Article  CAS  Google Scholar 

  4. N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 22, 7168 (2020)

    Article  CAS  Google Scholar 

  5. D. Devadiga, M. Selvakumar, P. Shetty, M.S. Santosh, Recent progress in dye sensitized solar cell materials and photo-supercapacitors: a review. J. Power Sources 493, 229698 (2021)

    Article  CAS  Google Scholar 

  6. F. Mujtahid, P.L. Gareso, B. Armynah, D. Tahir, Review effect of various types of dyes and structures in supporting performance of dye-sensitized solar cell TiO2-based nanocomposites. Int. J. Energy Res. 46, 726 (2022)

    Article  CAS  Google Scholar 

  7. P.N. Samanta, D. Majumdar, S. Roszak, J. Leszczynski, First-principles approach for assessing cold electron injection efficiency of dye-sensitized solar cell: Elucidation of mechanism of charge injection and recombination. J. Phys. Chem. C 124(5), 2817 (2020)

    Article  CAS  Google Scholar 

  8. W.-C. Oh, Y. Areerob, Modeling dye-sensitized solar cells with graphene based on nanocomposites in the Brillouin zone and density functional theory. J. Korean Ceram. Soc. 58, 50 (2021)

    Article  CAS  Google Scholar 

  9. A. Daoud, A. Cheknane, A. Meftah, J.M. Nunzi, M. Shalabi, H.S. Hilal, Spatial separation strategies to control charge recombination and dye regeneration in p-type dye sensitized solar cells. Sol. Energy 236, 107 (2022)

    Article  CAS  Google Scholar 

  10. S. He, L. Shang, Y. Gao, Y. Shi, F. Tan, X. Chen, G. Yue, Holistically modulating charge recombination via trisiloxane surface treatment for efficient dye-sensitized solar cells. J. Alloys Compd. 896, 1628647 (2022)

    Article  Google Scholar 

  11. Y. Noh, K. Kim, M. Choi, O. Song, Properties of blocking layer with Ag nano powder in a dye sensitized solar cell. J. Korean Ceram. Soc. 53, 105 (2016)

    Article  CAS  Google Scholar 

  12. G. Kim, Y. Noh, M. Choi, K. Kim, O. Song, Properties of working electrodes with IGZO layers in a dye sensitized solar cell. J. Korean Ceram. Soc. 53, 110 (2016)

    Article  CAS  Google Scholar 

  13. D.Y. Lee, H. Cho, D. Kang, J.-H. Kang, M.-H. Lee, B.-Y. Kim, N.-I. Cho, Effect of TiO2 coating thickness on photovoltaic performance of dye-sensitized solar cells prepared by screen-printing using TiO2 powders. J. Korean Ceram. Soc. 51, 362 (2014)

    Article  CAS  Google Scholar 

  14. M.D. Brady, L. Troian-Gautier, T.C. Motley, M.D. Turlington, G.J. Meyer, An insulating Al2O3 overlayer prevents lateral hole hopping across dye-sensitized TiO2 Surfaces. ACS Appl. Mater. Interfaces 11(30), 27453 (2019)

    Article  CAS  Google Scholar 

  15. A. Zatirostami, Increasing the efficiency of TiO2-based DSSC by means of a double layer RF-sputtered thin film blocking layer. Optik 207, 164419 (2020)

    Article  Google Scholar 

  16. M.E. Yeoh, K.Y. Chan, Efficiency enhancement in dye-sensitized solar cells with ZnO and TiO2 blocking layers. J. Electron. Mater. 48, 4342 (2019)

    Article  CAS  Google Scholar 

  17. R. Li, X. Huo, X. Han, Z. Wang, M. Zhang, M. Guo, Facile synthesis of ordered Nb2O5 coated TiO2 nanorod arrays for efficient perovskite solar cells. Appl. Surf. Sci. 542, 148728 (2021)

    Article  CAS  Google Scholar 

  18. T. Nikolai, L. Larina, J.K. Kang, O. Shevaleevskiy, Sol-gel processed TiO2 nanotube photoelectrodes for dye-sensitized solar cells with enhanced photovoltaic performance. Nanomaterials 10(2), 296 (2020)

    Article  Google Scholar 

  19. S. Shakir, H. Abd-ur-Rehman, K. Yunus, M. Iwamoto, V. Periasamy, Fabrication of un-doped and magnesium doped TiO2 films by aerosol assisted chemical vapor deposition for dye sensitized solar cells. J. Alloys Compd. 737, 740 (2018)

    Article  CAS  Google Scholar 

  20. M.N. Mustafa, S. Shafie, M.H. Wahid, Y. Sulaiman, Preparation of TiO2 compact layer by heat treatment of electrospun TiO2 composite for dye-sensitized solar cells. Thin Solid Films 693, 137699 (2020)

    Article  CAS  Google Scholar 

  21. M.N. Mustafa, Y. Sulaiman, Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells. Sol. Energy 215, 26 (2021)

    Article  CAS  Google Scholar 

  22. S.P. Lim, Function of compact (blocking) layer in photoanode. In Interfacial Engineering in Functional Materials for Dye‐Sensitized Solar Cells, ed by A. Pandikumar, K. Jothivenkatachalam, K. Bhojanaa (Wiley, New York, 2019), p. 107

  23. K.-W. Chen, L.-S. Chen, C.-M. Chen, Post-treatment of Nb2O5 compact layer in dye-sensitized solar cells for low-level lighting applications. J. Mater. Sci. Mater. Electron. 30, 15105 (2019)

    Article  CAS  Google Scholar 

  24. B.O. Owino, F.W. Nyongesa, A.A. Ogacho, B.O. Aduda, B.V. Odari, Effects of TiO2 blocking layer on photovoltaic characteristics of TiO2/Nb2O5 dye sensitized solar cells. MRS Adv. 5(20), 1049 (2020)

    Article  CAS  Google Scholar 

  25. E. Kouhestanian, S.A. Mozaffari, M. Ranjbar, H.S. Amoli, Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer. Org. Electron. 86, 105915 (2020)

    Article  CAS  Google Scholar 

  26. C.-H. Chang, C.-H. Chuang, D.-Y. Zhong, J.-C. Lin, C.-C. Sung, C.-Y. Hsu, Synthesized TiO2 mesoporous by addition of acetylacetone and graphene for dye sensitized solar cells. Coatings 11(7), 796 (2021)

    Article  CAS  Google Scholar 

  27. M.N. Mustafa, N.A. Azhari, Y. Sulaiman, Reduced graphene oxide-titanium dioxide compact layer prepared via electrodeposition for enhanced performance of dye-sensitized solar cells. Opt. Mater. 120, 111475 (2021)

    Article  CAS  Google Scholar 

  28. S.G. Adhikari, A. Shamsaldeen, G.G. Andersson, The effect of TiCl4 treatment on the performance of dye-sensitized solar cells. J. Chem. Phys. 151, 164704 (2019)

    Article  Google Scholar 

  29. J. Yu, H. Yu, B. Cheng, C. Trapalis, Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. J. Mol. Catal. A Chem. 249, 135 (2006)

    Article  CAS  Google Scholar 

  30. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814 (2018)

    Article  Google Scholar 

  31. G.A. Nowsherwan, A. Zaib, A.A. Shah, M. Khan, A. Shakoor, S.N.S. Bukhari, M. Riaz, S.S. Hussain, M.A. Shar, A. Alhazaa, Preparation and numerical optimization of TiO2:CdS thin films in double perovskite solar cell. Energies 16, 900 (2023)

    Article  CAS  Google Scholar 

  32. H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D.-R. Jung, B. Park, The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr. Appl. Phys. 12(3), 737 (2012)

    Article  Google Scholar 

  33. K.P.S. Zanoni, R.C. Amaral, N.Y.M. Iha, All-nano-TiO2 compact film for high-performance dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6(13), 10421 (2014)

    Article  CAS  Google Scholar 

  34. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613 (2008)

    Article  CAS  Google Scholar 

  35. J.-P. Charles, I. Mekkaoui-Alaoui, G. Bordure, P. Mialhe, A critical study of the effectiveness of the single and double exponential models for I–V characterization of solar cells. Solid State Electron. 28(8), 807 (1985)

    Article  CAS  Google Scholar 

  36. S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin, M. Grätzel, Control of dark current in photoelectrochemical (TiO2/I–I3−) and dye-sensitized solar cells. Chem. Commun. 34, 4351 (2005)

    Article  Google Scholar 

  37. A. Zaban, M. Greenshtein, J. Bisquert, Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4(8), 859 (2003)

    Article  CAS  Google Scholar 

  38. S. Sarker, A.J.S. Ahammad, H.W. Seo, D. Kim, Electrochemical impedance spectra of dye-sensitized solar cells: Fundamentals and spreadsheet calculation. Int. J. Photoenergy 2014, 851705 (2014)

    Article  Google Scholar 

  39. C.-P. Hsu, K.-M. Lee, J.T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, K.-C. Ho, EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochim. Acta 53(25), 7514 (2008)

    Article  CAS  Google Scholar 

  40. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Mater. Solar Cells 87(1–4), 117 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by “Research Base Construction Fund Support Program” funded by Jeonbuk National University in 2022. This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1004580). This work was also supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20213030040110).

Author information

Authors and Affiliations

Authors

Contributions

W-YP: Investigation, data curation, formal analysis, validation, writing—original draft. Y-TP: Data curation, formal analysis. K-TL: Conceptualization, funding acquisition, investigation, methodology, supervision, validation, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Ki-Tae Lee.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, WY., Park, YT. & Lee, KT. Systematic analysis of TiO2 compact layer effect on the performance of dye-sensitized solar cells. J. Korean Ceram. Soc. 60, 905–917 (2023). https://doi.org/10.1007/s43207-023-00316-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00316-2

Keywords

Navigation