Skip to main content

Advertisement

Log in

Sol–gel synthesis and structural and luminescent characteristics of a Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 polycomponent solid solution

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In the work, a fine powder of GdNb0.9Ta0.1O4-mixed gadolinium tantalum niobate activated with rare earth (REE) cations (Sm3+, Eu3+, Tb3+ and Er3+) was obtained by sol–gel synthesis. The evolution of the powder from amorphous to crystalline form was also studied in the work. The evolution was studied by synchronous thermal and X-ray analysis. The phase composition and structure of the resulting Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 powders were analyzed in detail. Ceramic samples of the Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 polycomponent solid solution were prepared from the sol–gel synthesized powder using traditional ceramic technology. The phase composition and characteristics of the structure of individual phases of the Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 ceramic solid solution was determined by full-profile analysis of XRD patterns of polycrystals. We established that incorporation of REE (Tb, Er, Eu, Sm) into the gadolinium site in GdNb0.9Ta0.1O4 solid solution leads to various distortions of the corresponding polyhedra. Note that the distortion degree in this case is much greater than the distortion of the initial GdNbO4 structure. The photoluminescent (PL) properties of the Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 solid solution were studied in the visible wavelength range. Analysis of literature and our own data revealed: electronic relaxation pathways in Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 ceramics can be different depending on the energy of the exciting radiation. Excitation by the 376 nm line leads to internal energy conversion over 4fn–4fn levels of REE cations (Sm3+, Eu3+, Tb3+ and Er3+). The energy transfer between the Nb4+–O–Ta4+–O groups and REE is maximal in this case, while the radiation of the matrix from Nb4+–O–Ta4+–O emission centers is minimal. Upon excitation in the near-UV range (376 nm), Gd3+ cations do not participate in the energy transfer between the matrix and 4fn–4fn levels of REE dopants. The maximum PL of Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 ceramics is observed in the green–red region of the spectrum from 5D07F2 and 4G5/26H7/2 transitions of Eu3+ and Sm3+. The emission is maximal at ~ 612 nm; it corresponds to the 5D07F2 electric dipole transition of the Eu3+ cation. We established that the efficiency of energy transfer between the matrix and doping REE cations for Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 ceramics strongly depends on the energy of the exciting radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available from the corresponding author on a reasonable request.

References

  1. T. Yanagida, Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 94(2), 75–97 (2018). https://doi.org/10.2183/pjab.94.007

    Article  CAS  Google Scholar 

  2. S. Ding, H. Zhang, Q. Zhang, Y. Chen, R. Dou, F. Peng, W.G. Liu, D. Sun, Experimental and first principle study of the structure, electronic, optical and luminescence properties of M-type GdNbO4 phosphor. J. Sol. St. Chem. 262, 87–83 (2018). https://doi.org/10.1016/j.jssc.2018.03.011

    Article  CAS  Google Scholar 

  3. R. Haugsrud, B. Ballesteros, M. Lira-Cantú, T. Norby, Ionic and electronic conductivity of 5% Ca-doped GdNbO4. J. Electrochem. Soc. 153, J87–J90 (2006). https://doi.org/10.1149/1.2203933

    Article  CAS  Google Scholar 

  4. F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35–54 (2008). https://doi.org/10.1021/cm7024203

    Article  CAS  Google Scholar 

  5. O. Voloshyna, I. Boiaryntseva, D. Spassky, O. Sidletskiy, Luminescence properties of the yttrium and gadolinium tantalo-niobates. Sol. St. Phen. 230, 172–177 (2015). https://doi.org/10.4028/www.scientific.net/SSP.230.172

    Article  Google Scholar 

  6. O. Voloshyna, I. Gerasymov, O. Sidletskiy et al., Fast ultradense GdTa1-xNbxO4 scintillator crystals. Opt. Mater. 66, 332–337 (2017). https://doi.org/10.1016/j.optmat.2017.02.037

    Article  CAS  Google Scholar 

  7. W.P. Liu, Q.L. Zhang, L.H. Ding, D.L. Sun, J.Q. Luo, S.T. Yin, Photoluminescence properties of LuTaO4:RE3+(RE3+= Eu3+, Tb3+) with M′-type structure. J. Alloys Compd. 474, 226–228 (2009). https://doi.org/10.1016/j.jallcom.2008.06.059

    Article  CAS  Google Scholar 

  8. M. Yang, X. Liu, T. Hou, L. Du, Q. Wang, B. Chang, B. Li, J. Liu, G. Deng, Kityk Synthesis and luminescent properties of GdNbO4:Bi3+ phosphors via high temperature high pressure. J. Alloys Compd. 723, 1–8 (2017). https://doi.org/10.1016/j.jallcom.2017.06.204

    Article  CAS  Google Scholar 

  9. M. Nikl, A. Yoshikawa, Recent R&D Trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 3(4), 463–481 (2015). https://doi.org/10.1002/adom.201400571

    Article  CAS  Google Scholar 

  10. A. Dwivedi, K. Mishra, S. Rai, Multi-modal luminescence properties of RE3+ (Tm3+, Yb3+) and Bi3+ activated GdNbO4 phosphors – upconversion, downshifting and quantum cutting for spectral conversion. J. Phys. D: Appl. Phys. 48, 435103 (2015). https://doi.org/10.1088/0022-3727/48/43/435103

    Article  CAS  Google Scholar 

  11. K.P.F. Siqueira, P.P. Lima, R.A.S. Ferreira, L.D. Carlos, E.M. Bittar, F.M. Matinaga, R. Paniago, K. Krambrock, R.L. Moreira, A. Dias, Influence of the matrix on the red emission in europium self-activated orthoceramics. J. Phys. Chem. C 119(31), 17825–17835 (2015). https://doi.org/10.1021/acs.jpcc.5b05473

    Article  CAS  Google Scholar 

  12. X. Liu, C. Chen, S. Li, Y. Dai, H. Guo, X. Tang, Y. Xie, L. Yan, Host-sensitized and tunable luminescence of GdNbO4: Ln3+ (Ln3+= Eu3+/Tb3+/Tm3+) nanocrystalline phosphors with abundant color. Inorg. Chem. 55, 10383–10396 (2016). https://doi.org/10.1021/acs.inorgchem.6b01637

    Article  CAS  Google Scholar 

  13. N. da Silva Marques, E.J. Nassar, M. Verelst, R. Mauricot, H. Brunckova, L.A. Rocha, Effect of ytterbium amount on LaNbO4:Tm3+, Yb3+ nanoparticles for bio-labelling applications. Adv. Med. Sci. 65(2), 324–331 (2020). https://doi.org/10.1016/j.advms.2020.06.001

    Article  Google Scholar 

  14. M. Ayvacikli, A. Ege, E. Ekdal, E.-J. Popovici, N. Can, Radioluminescence study of rare earth doped some yttrium based phosphors. Opt. Mater. 34(11), 1958–1961 (2012). https://doi.org/10.1016/j.optmat.2012.05.023

    Article  CAS  Google Scholar 

  15. M.N. Palatnikov, M.V. Smirnov, S.M. Masloboeva, O.B. Shcherbina, N.V. Sidorov, N.I. Steblevskaya, M.V. Belobeletskaya, Luminescence properties of sol-gel derived ceramic GdNbxTa1-xO4 and YNbxTa1-xO4 solid solutions. Inorg. Mater. 56(4), 437–442 (2020). https://doi.org/10.1134/S0020168520040111

    Article  CAS  Google Scholar 

  16. V.B. Zlokazov, V.V. Chernyshev, MRIA—a program for a full profile analysis of powder neutron-diffraction time-of-flight (Direct and Fourier) spectra. J. Appl. Cryst. 25, 447–451 (1992). https://doi.org/10.1107/S0021889891013122

    Article  Google Scholar 

  17. R. Haugsrud, T. Norby, High-temperature proton conductivity in acceptor-substituted rare-earth ortho-tantalates, LnTaO4. J. Am. Ceram. Soc. 90(4), 1116–1121 (2007). https://doi.org/10.1111/j.1551-2916.2007.01621.x

    Article  CAS  Google Scholar 

  18. R.B. Ferguson, The crystallography of synthetic YTaO4 and fused fergusonite. Can. Mineral. 6, 72–77 (1957)

    CAS  Google Scholar 

  19. V.S. Stubican, High-temperature transitions in rare-earth niobates and tantalates. J. Am. Ceram. Soc. 47, 55–58 (1964). https://doi.org/10.1111/j.1151-2916.1964.tb15654.x

    Article  CAS  Google Scholar 

  20. S.A. Mather, P.K. Davies, Nonequilibrium phase formation in oxides prepared at low temperature: fergusonite-related phases. J. Am. Ceram. Soc. 78, 2737 (1995). https://doi.org/10.1111/J.1151-2916.1995.TB08049.X

    Article  CAS  Google Scholar 

  21. L.N. Kinzhibalo, V.K. Trunov, A.A. Evdokimov, V.G. Krongauz, Refinement of the crystal structure of fergusonite. Sov. Phys. Crystallogr. 27, 22 (1982)

    Google Scholar 

  22. G. Blasse, A. Bril, Luminescence phenomena in compounds with fergusonite structure. J. Luminesc. 3, 109–131 (1970). https://doi.org/10.1016/0022-2313(70)90011-6

    Article  CAS  Google Scholar 

  23. W. Liu, Q. Zhang, W. Zhou, C. Gu, S. Yin, Growth and luminescence of M-type GdTaO4 and Tb:GdTaO4 scintillation single crystals. IEEE Transact. Nucl. Sci. 57(3), 1287–1290 (2010). https://doi.org/10.1109/TNS.2009.2037320

    Article  CAS  Google Scholar 

  24. X. Xiao, B. Yan, Synthesis and luminescent properties of novel RENbO4:Ln3+ (RE=Y, Gd, Lu; Ln=Eu, Tb) micro-crystalline phosphors. J. Non-Cryst. Sol. 351, 3634–3639 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.09.018

    Article  CAS  Google Scholar 

  25. J. Si, N. Yang, M. Xu, G. Li, G. Cai, W. Yi, J. Zhang, Structure and tunable luminescence in Sm3+/Er3+ doped host-sensitized LaNbO4 phosphor by energy transfer. Ceram. Internat. 46(18A), 28373–28381 (2020). https://doi.org/10.1016/j.ceramint.2020.07.341

    Article  CAS  Google Scholar 

  26. P. Zhou, Q. Zhang, K. Ning, H. Yang, D. Sun, J. Luo, Sh. Yin, Structural and spectral investigations on heavily Er3+ doped RETaO4 (RE = Sc, Y, Gd, Lu) polycrystalline powders. Proc. SPIE. 8206, 820622 (2011). https://doi.org/10.1117/12.910449

    Article  CAS  Google Scholar 

  27. M. Hirano, K. Ishikawa, Hydrothermal formation and up-conversion luminescence of Er3+-doped GdNbO4. J. Am. Ceram. Soc. 100(7), 2814–2821 (2017). https://doi.org/10.1111/jace.14835

    Article  CAS  Google Scholar 

  28. D. Zhang, L. An Tang, ZZhu Yang, Potential red-emitting phosphor GdNbO4:Eu3+, Bi3+ for near-UV white light emitting diodes. Intern. J. Minerals Metallurg. Mater. 19(11), 1036–1039 (2012). https://doi.org/10.1007/s12613-012-0666-3

    Article  CAS  Google Scholar 

  29. L. Zhang, Sh. Yi, X. Hu, B. Liang, W. Zhao, Y. Wang, Synthesis and photoluminescence properties of multicolor tunable GdNbO4: Tb3+, Eu3+ phosphors based on energy transfer. Modern Phys. Lett. B. 31(8), 1750051 (2017). https://doi.org/10.1142/S0217984917500518

    Article  CAS  Google Scholar 

  30. L.H. Brixner, H.-Y. Chen, On the structural and luminescent properties of the M’ LnTaO4 rare earth tantalates. Chem. Etch. Charact. 130(12), 2435–2443 (1998). https://doi.org/10.1149/1.2119609

    Article  Google Scholar 

  31. H. Zhang, Y. Wang, L. Xie, Luminescent properties of Tb3+ activated GdTaO4 with M and M’ type structure under UV–VUV excitation. J. Luminesc. 130, 2089–2092 (2010). https://doi.org/10.1016/j.jlumin.2010.05.032

    Article  CAS  Google Scholar 

  32. O.B. Shcherbina, M.V. Smirnov, S.M. Masloboeva, K.P. Andryushin, V.V. Efremov, M.N. Palatnikov, Structure and properties of luminescent ceramics GdNbO4 obtained by usual technology and by hot pressing. Optik Intern. J. Light Electron. Opt. 245, 167683 (2021). https://doi.org/10.1016/j.ijleo.2021.167683

    Article  CAS  Google Scholar 

  33. M. Nazarov, A. Zhbanov, Band edge singularities and density of states in YTaO4 and YNbO4. Moldav. J. Phys. Sci. 10(1), 52–58 (2011)

    Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education Russian Federation scientific topic 0186-2022-0002 (FMEZ-2022-0016).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—O.B., M.N.; methodology—O.B., M.V., S.M., O.V.; validation—M.V., V.V., A.V.; investigation—O.B., M.V., S.M., O.V., E.V., Yu.P.; writing—original draft—O.B., M.V., S.M., E.V.; writing—review and editing—M.N.; visualization—O.B., M.V., V.V.; supervision—O.B., M.N.

Corresponding author

Correspondence to Olga B. Shcherbina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palatnikov, M.N., Shcherbina, O.B., Masloboeva, S.M. et al. Sol–gel synthesis and structural and luminescent characteristics of a Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 polycomponent solid solution. J. Korean Ceram. Soc. 60, 657–668 (2023). https://doi.org/10.1007/s43207-023-00288-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00288-3

Keywords

Navigation