Skip to main content
Log in

Nano-scale study on molecular structure, thermal stability, and mechanical properties of geopolymer

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The well thermal stability and mechanical properties of geopolymer can be attributed to its predominant adhesive constituent, sodium alumino-silicate hydrate (N-A-S-H). However, the intrinsic relation between molecular structure, stoichiometry, and performance of N-A-S-H is far from being understood. Herein, the structure, thermal stability, and tensile behavior of N-A-S-H at different Si/Al ratio are investigated by means of ReaxFF molecular dynamics. The results show that, after extreme low/high temperature treatment, the atomic configuration can also recover to a large extent. The hydrolysis during high temperature treatment slightly inhibits the structure recovery. Its expansion strain at elevated temperature is much smaller than that of calcium silicate hydrate, the primary component of Portland cement. Aluminum addition diminishes alumino-silicate skeleton’s connectivity and promotes the formation of energetically unstable Al–O–Al bonds, resulting in the drop of thermal stability and mechanical properties. The consistence between simulations and experiments demonstrates the considerable function of molecular structure of N-A-S-H for the macro-performance of geopolymer.

Graphical abstract

Sodium alumino-silicate hydrate (N-A-S-H), featuring cross-linked glassy structure, exhibits excellent thermal stability. Mechanical properties increase with Si/Al ratio

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data related to this paper can be requested from the authors.

References

  1. P. Duxson, G. Lukey, F. Separovic et al., Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44, 832–839 (2005)

    Article  CAS  Google Scholar 

  2. P. Duxson, A. Fernández-Jiménez, J.L. Provis et al., Geopolymer technology: the current state of the art. J Mater Sci. 42, 2917–2933 (2007)

    Article  CAS  Google Scholar 

  3. J. Provis, J. Van Deventer, Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem. Eng. Sci. 62, 2318–29 (2007)

    Article  CAS  Google Scholar 

  4. G. Habert, J.B.D.E.D. Lacaillerie, N. Roussel, An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Cleaner Prod. 19, 1229–38 (2011)

    Article  CAS  Google Scholar 

  5. B. Singh, G. Ishwarya, M. Gupta et al., Geopolymer concrete: a review of some recent developments. Constr Build Mater. 85, 78–90 (2015)

    Article  Google Scholar 

  6. J. Shi, J. Tan, B. Liu et al., Experimental study on full-volume slag alkali-activated mortars: air-cooled blast furnace slag versus machine-made sand as fine aggregates. J Hazard Mater. 403, 123983 (2021)

    Article  CAS  Google Scholar 

  7. J. Shi, B. Liu, Z. He et al., A green ultra-lightweight chemically foamed concrete for building exterior: a feasibility study. J Cleaner Prod. 288, 125085 (2021)

    Article  CAS  Google Scholar 

  8. J.L. Provis, A. Palomo, C. Shi, Advances in understanding alkali-activated materials. Cem Concr Res. 78, 110–125 (2015)

    Article  CAS  Google Scholar 

  9. C. Shi, A.F. Jiménez, A. Palomo, New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res. 41, 750–763 (2011)

    Article  CAS  Google Scholar 

  10. K. Arbi, M. Nedeljković, Y. Zuo et al., A review on the durability of alkali-activated fly ash/slag systems: advances, lssues, and perspectives. Ind Eng Chem Res. 55, 5439–5453 (2016)

    Article  CAS  Google Scholar 

  11. Y. Zhang, X. Wan, D. Hou et al., The effect of mechanical load on transport property and pore structure of alkali-activated slag concrete. Constr Build Mater. 189, 397–408 (2018)

    Article  CAS  Google Scholar 

  12. J. Shi, Y. Liu, H. Xu et al., The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC). Ceram. Int. 48, 12884–12896 (2022)

    Article  CAS  Google Scholar 

  13. C. Famy, A. Brough, H. Taylor, The CSH gel of Portland cement mortars: part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on CSH, AFm and AFt phase compositions. Cem Concr Res. 33, 1389–98 (2003)

    Article  CAS  Google Scholar 

  14. J.J. Thomas, H.M. Jennings, A colloidal interpretation of chemical aging of the CSH gel and its effects on the properties of cement paste. Cem Concr Res. 36, 30–38 (2006)

    Article  CAS  Google Scholar 

  15. M. Okuno, N. Zotov, M. Schmücker et al., Structure of SiO2–Al2O3 glasses: combined X-ray diffraction, IR and Raman studies. J Non-Cryst Solids. 351, 1032–1038 (2005)

    Article  CAS  Google Scholar 

  16. M.R. Sadat, S. Bringuier, A. Asaduzzaman et al., A molecular dynamics study of the role of molecular water on the structure and mechanics of amorphous geopolymer binders. J Chem Phys. 145, 1633–2503 (2016)

    Article  Google Scholar 

  17. P. Duxson, J.L. Provis, G.C. Lukey et al., Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf., A 269, 47–58 (2005)

    Article  CAS  Google Scholar 

  18. P.S. Singh, M. Trigg, I. Burgar et al., Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR. J Mater Sci Eng A. 396, 392–402 (2005)

    Article  Google Scholar 

  19. P. Duxson, J.L. Provis, G.C. Lukey et al., The role of inorganic polymer technology in the development of ‘green concrete.’ Cem Concr Res. 37, 1590–1597 (2007)

    Article  CAS  Google Scholar 

  20. T. Uchino, T. Sakka, Y. Ogata et al., Local structure of sodium aluminosilicate glass: an ab initio molecular orbital study. J. Phys. Chem. 97, 9642–9649 (1993)

    Article  CAS  Google Scholar 

  21. Y. Xiang, J. Du, M.M. Smedskjaer et al., Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations. J Chem Phys. 139, 044507 (2013)

    Article  Google Scholar 

  22. D. Hou, T. Zhao, H. Ma et al., Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: structure, reactivity, and mechanical properties. J Phys Chem. 119, 1346–1358 (2015)

    CAS  Google Scholar 

  23. H. Wan, L. Yuan, Y. Zhang, Insight into the leaching of sodium alumino-silicate hydrate (NASH) gel: a molecular dynamics study. Frontiers in Materials. 7, 56 (2020)

    Article  Google Scholar 

  24. M. Zhang, N.A. Deskins, G. Zhang et al., Modeling the polymerization process for geopolymer synthesis through reactive molecular dynamics simulations. J Phys Chem. 122, 6760–6773 (2018)

    CAS  Google Scholar 

  25. Y. Zhang, J. Zhang, J. Jiang et al., The effect of water molecules on the structure, dynamics, and mechanical properties of sodium aluminosilicate hydrate (NASH) gel: a molecular dynamics study. Constr Build Mater. 193, 491–500 (2018)

    Article  CAS  Google Scholar 

  26. D. Hou, J. Zhang, W. Pan et al., Nanoscale mechanism of ions immobilized by the geopolymer: a molecular dynamics study. J Nucl Mater. 528, 151841 (2020)

    Article  CAS  Google Scholar 

  27. Y. Zhang, T. Li, D. Hou et al., Insights on magnesium and sulfate ions’ adsorption on the surface of sodium alumino-silicate hydrate (NASH) gel: a molecular dynamics study. Phys Chem Chem Phys. 20, 18297 (2018)

    Article  CAS  Google Scholar 

  28. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  CAS  Google Scholar 

  29. W.G. Hoover, Constant-pressure equations of motion. Phys. Rev. A 34, 2499 (1986)

    Article  CAS  Google Scholar 

  30. P.A. Bonnaud, Q. Ji, B. Coasne et al., Thermodynamics of water confined in porous calcium-silicate-hydrates. Langmuir 28, 11422–11432 (2012)

    Article  CAS  Google Scholar 

  31. C. Bai, L. Liu, H. Sun, Molecular dynamics simulations of methanol to olefin reactions in HZSM-5 zeolite using a reaxff force field. J Phys Chem. 116, 7029–7039 (2012)

    CAS  Google Scholar 

  32. D. Hou, Z. Li, Molecular dynamics study of water and ions transport in nano-pore of layered structure: a case study of tobermorite. Microporous Mesoporous Mater. 195, 9–20 (2014)

    Article  CAS  Google Scholar 

  33. Y. Zhang, L. Guo, J. Shi et al., Full process of calcium silicate hydrate decalcification: molecular structure, dynamics, and mechanical properties. Cem Concr Res. 161, 106964 (2022)

    Article  CAS  Google Scholar 

  34. L. Lu, Y. Zhang, B. Yin, Structure evolution of the interface between graphene oxide-reinforced calcium silicate hydrate gel particles exposed to high temperature. Comput Mater Sci. 173, 109440 (2020)

    Article  CAS  Google Scholar 

  35. D. Hou, J. Yu, P. Wang, Molecular dynamics modeling of the structure, dynamics, energetics and mechanical properties of cement-polymer nanocomposite. Compos. B 162, 433–444 (2019)

    Article  CAS  Google Scholar 

  36. D. Hou, H. Ma, Z. Li et al., Molecular simulation of “hydrolytic weakening”: a case study on silica. Acta Mater. 80, 264–277 (2014)

    Article  CAS  Google Scholar 

  37. C.E. White, K. Page, N.J. Henson et al., In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Appl. Clay Sci. 73, 17–25 (2013)

    Article  CAS  Google Scholar 

  38. C.A. Rosas-Casarez, S.P. Arredondo-Rea, J.M. Gómez-Soberón et al., Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials. Int J Adv Comput Sci Appl. 4, 221–226 (2014)

    Google Scholar 

  39. R.P. Williams, A. Van Riessen, Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD. Fuel 89, 3683–3692 (2010)

    Article  CAS  Google Scholar 

  40. F. Škvára, V. Šmilauer, P. Hlaváček et al., A weak alkali bond in (N, K)–A–S–H gels: evidence from leaching and modeling. Ceramics-Silikáty 56, 374–382 (2012)

    Google Scholar 

  41. M. Zhang, M. Zhao, G. Zhang et al., Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Constr Build Mater. 124, 373–382 (2016)

    Article  CAS  Google Scholar 

  42. S.A. Bernal, J.L. Provis, B. Walkley et al., Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res. 53, 127–144 (2013)

    Article  CAS  Google Scholar 

  43. X. Lu, J.T. Reiser, B. Parruzot et al., Effects of Al: Si and (Al+ Na): Si ratios on the properties of the international simple glass, part II: Structure. J Am Ceram Soc. 104, 183–207 (2021)

    Article  CAS  Google Scholar 

  44. J. Jiang, L. Guo, L. Tang et al., The manner and extent to which the hydration shell impacts interactions between hydrated species. Phys Chem Chem Phys. 23, 20496–20508 (2021)

    Article  CAS  Google Scholar 

  45. Y. Zhang, Z. Yang, J. Jiang, Insight into ions adsorption at the C-S-H gel-aqueous electrolyte interface: from atomic-scale mechanism to macroscopic phenomena. Constr Build Mater. 321, 126179 (2022)

    Article  CAS  Google Scholar 

  46. Y. Zhang, Q. Zhang, D. Hou et al., Tuning interfacial structure and mechanical properties of graphene oxide sheets/polymer nanocomposites by controlling functional groups of polymer. Appl Surf Sci. 504, 144152 (2020)

    Article  Google Scholar 

  47. D. Hou, D. Li, T. Zhao et al., Confined water dissociation in disordered silicate nanometer-channels at elevated temperatures: mechanism, dynamics and impact on substrates. Langmuir 32, 4153–4168 (2016)

    Article  CAS  Google Scholar 

  48. M. Schmücker, K.J. MacKenzie, Microstructure of sodium polysialate siloxo geopolymer. Ceram. Int. 31, 433–437 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Australian Research Council (Grant No. IH150100006).

Author information

Authors and Affiliations

Authors

Contributions

WL: contributed to data curation, writing—original draft preparation, visualization, investigation, and software. YW: contributed to reviewing and editing. CY: contributed to investigation, validation, and methodology. ZH: contributed to visualization. CZ: contributed to writing—reviewing and editing. YY: contributed to conceptualization.

Corresponding authors

Correspondence to Chuan Zuo or Yang Yu.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, Y., Yu, C. et al. Nano-scale study on molecular structure, thermal stability, and mechanical properties of geopolymer. J. Korean Ceram. Soc. 60, 413–423 (2023). https://doi.org/10.1007/s43207-022-00276-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00276-z

Keywords

Navigation