Skip to main content

Advertisement

Log in

Mullite-bonded porous SiC-based Mn3O4–Ni system: control of electrical resistivity, flexural strength, and extrusion

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

An electrically conductive mullite-bonded porous SiC-based Mn3O4–Ni system was designed, which provided low-temperature sintering and excellent extrudability into complex shapes. Each designed composition contained kaolin (30 wt%) and Mn3O4 (10 wt%) as sintering aids. The combination of Ni (0–20 wt%) and sintering temperature (1100–1300 °C) regulated the electrical resistivity (5.5 × 107–3.4 × 10–1 Ω cm) and flexural strength (33 ± 2–59 ± 3 MPa) of the sintered samples. Interface reactions formed secondary phases [e.g. nickel silicide (Ni2Si) and manganese silicate (MnSiO3)], which decreased the electrical resistivity. The in situ formation of mullite and an increased amount of Ni collectively improved the flexural strength. The sample with 15 wt% Ni sintered at 1200 °C in argon flow had a low electrical resistivity of 5.6 × 10–1 Ω cm and a good flexural strength of 51 ± 4 MPa. The same composition was extruded to form a square honeycomb structure to verify the large-scale viability of the developed composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.W. Chen, Y. Miyamoto, Fabrication of porous silicon carbide ceramics with high porosity and high strength. J. Eur. Ceram. Soc. 34, 837–840 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.10.008

    Article  CAS  Google Scholar 

  2. J.H. She, Z.Y. Deng, J. Daniel-doni, T. Ohji, Oxidation bonding of porous silicon carbide ceramics. J. Mater. Sci. 37, 3615–3622 (2002). https://doi.org/10.1023/A:1016596805717

    Article  CAS  Google Scholar 

  3. J.J. Liu, B. Ren, Y.D. Rong, Y.J. Lu, Y. Zhao, L. Wang, X.Q. Xi, J.L. Yang, Y. Huang, Ultralight and mechanically robust SiC foams with interconnected cellular architecture. Ceram. Int. 46, 17962–17968 (2020). https://doi.org/10.1016/j.ceramint.2020.04.108

    Article  CAS  Google Scholar 

  4. Y. Li, L. Chen, L. Hong, K. Ran, Y.H. Zhan, Q. Chen, Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder. J. Alloys Compd. 785, 838–845 (2019). https://doi.org/10.1016/j.jallcom.2019.01.114

    Article  CAS  Google Scholar 

  5. J.W. Seo, K. Choi, Application of CFD simulation to silicon carbide deposition for nozzles with funnel. J. Korean Ceram. Soc. 58, 184–191 (2021). https://doi.org/10.1007/s43207-020-00082-5

    Article  CAS  Google Scholar 

  6. S. Schaafhausen, E. Yazhenskikh, S. Heidenreich, M. Muller, Corrosion of silicon carbide hot gas filter candles in gasification environment. J. Eur. Ceram. Soc. 34, 575–588 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.10.011

    Article  CAS  Google Scholar 

  7. S.Z.A. Bukhari, J.H. Ha, J. Lee, I.H. Song, Fabrication and optimization of a clay-bonded SiC flat tubular membrane support for microfiltration applications. Ceram. Int. 43, 7736–7742 (2017). https://doi.org/10.1016/j.ceramint.2017.03.079

    Article  CAS  Google Scholar 

  8. J.H. Eom, Y.W. Kim, I.H. Song, Effects of the initial α-SiC content on the microstructure, mechanical properties, and permeability of macroporous silicon carbide ceramics. J. Eur. Ceram. Soc. 32, 1283–1290 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.040

    Article  CAS  Google Scholar 

  9. Y.W. Kim, Y.H. Kim, K.J. Kim, Electrical properties of liquid-phase sintered silicon carbide ceramics: a review. Crit. Rev. Solid State. 45, 66–84 (2020). https://doi.org/10.1080/10408436.2018.1532394

    Article  CAS  Google Scholar 

  10. J. Ihle, H.P. Martin, M. Herrmann, P. Obenaus, J. Adler, W. Hermel, A. Michaelis, The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide. Int. J. Mater. Res. 97, 649–656 (2006). https://doi.org/10.3139/146.101285

    Article  CAS  Google Scholar 

  11. M.S. Anwar, S.Z.A. Bukhari, J.H. Ha, J. Lee, I.H. Song, Y.W. Kim, Controlling the electrical resistivity of porous silicon carbide ceramics and their applications: a review. Int J Appl Ceram Tec. (2022). https://doi.org/10.1111/ijac.14034

    Article  Google Scholar 

  12. C. Duong-Viet, H. Ba, Z. El-Berrichi, J.M. Nhut, M.J. Ledoux, Y.F. Liu, C. Pham-Huu, Silicon carbide foam as a porous support platform for catalytic applications. New J. Chem. 40, 4285–4299 (2016). https://doi.org/10.1039/c5nj02847g

    Article  CAS  Google Scholar 

  13. Y.W. Kim, J.H. Eom, S. Raju, Processing and properties of macroporous silicon carbide ceramics: a review. J. Asian Ceram. Soc. 1, 220–242 (2013). https://doi.org/10.1016/j.jascer.2013.07.003

    Article  CAS  Google Scholar 

  14. G.D. Kim, Y.W. Kim, I.H. Song, K.J. Kim, Effects of carbon and silicon on electrical, thermal, and mechanical properties of porous silicon carbide ceramics. Ceram. Int. 46, 15594–15603 (2020). https://doi.org/10.1016/j.ceramint.2020.03.106

    Article  CAS  Google Scholar 

  15. S. Kultayeva, J.H. Ha, R. Malik, Y.W. Kim, K.J. Kim, Effects of porosity on electrical and thermal conductivities of porous SiC ceramics. J. Eur. Ceram. Soc. 40, 996–1004 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.045

    Article  CAS  Google Scholar 

  16. Y. Taki, M. Kitiwan, H. Katsui, T. Goto, Electrical conductivity of C-SiC and Si-SiC prepared by spark plasma sintering. Mater. Today 4, 11441–11444 (2017). https://doi.org/10.1016/j.matpr.2017.09.024

    Article  CAS  Google Scholar 

  17. Y. Taki, M. Kitiwan, H. Katsui, T. Goto, Electrical and thermal properties of off-stoichiometric SiC prepared by spark plasma sintering. J Asian Ceram Soc. 6, 95–101 (2018). https://doi.org/10.1080/21870764.2018.1446490

    Article  Google Scholar 

  18. K. Konig, V. Boffa, B. Buchbjerg, A. Farsi, M.L. Christensen, G. Magnacca, Y.Z. Yue, One-step deposition of ultrafiltration SiC membranes on macroporous SiC supports. J Membr. Sci. 472, 232–240 (2014). https://doi.org/10.1016/j.memsci.2014.08.058

    Article  CAS  Google Scholar 

  19. B.L. Yuan, H.X. Wang, G. Yu, J.B. Ma, W.K. Liu, L.F. Liu, Y.S.Z.J. Shen, Preparation and properties of porous silicon carbide based ceramic filter. J. Alloys Compd. 684, 613–615 (2016). https://doi.org/10.1016/j.jallcom.2016.05.216

    Article  CAS  Google Scholar 

  20. B. Wang, H. Zhang, H.T. Phuong, F. Jin, J.F. Yang, K. Ishizaki, Gas permeability and adsorbability of the glass-bonded porous silicon carbide ceramics with controlled pore size. Ceram. Int. 41, 2279–2285 (2015). https://doi.org/10.1016/j.ceramint.2014.10.032

    Article  CAS  Google Scholar 

  21. A. Une, P. Kunyoo, M. Mochida, K. Yoshitomi, S. Matsui, A new vacuum pin chuck for ArF laser lithography. Microelectron. Eng. 61–2, 113–121 (2002). https://doi.org/10.1016/S0167-9317(02)00457-4

    Article  Google Scholar 

  22. C.C. Agrafiotis, I. Mavroidis, A.G. Konstandopoulos, B. Hoffschmidt, P. Stobbe, M. Romero, V. Fernandez-Quero, Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Sol. Energy Mater. Sol. Cells. 91, 474–488 (2007). https://doi.org/10.1016/j.solmat.2006.10.021

    Article  CAS  Google Scholar 

  23. Y.W. Kim, Y.K. Seo, T. Nishimura, W.S. Seo, High thermal conductivity of spark plasma sintered silicon carbide ceramics with yttria and scandia. J. Am. Ceram. Soc. 100, 1290–1294 (2017). https://doi.org/10.1111/jace.14748

    Article  CAS  Google Scholar 

  24. D.H.A. Besisa, E.M.M. Ewais, E.A.M. Shalaby, A. Usenko, D.V. Kuznetsov, Thermoelectric properties and thermal stress simulation of pressureless sintered SiC/AlN ceramic composites at high temperatures. Sol. Energy Mater. Sol. Cell. 182, 302–313 (2018). https://doi.org/10.1016/j.solmat.2018.03.032

    Article  CAS  Google Scholar 

  25. M. Fujisawa, T. Hata, H. Kitagawa, P. Bronsveld, Y. Suzuki, K. Hasezaki, Y. Noda, Y. Imamura, Thermoelectric properties of porous SiC/C composites. Renew. Energy 33, 309–313 (2008). https://doi.org/10.1016/j.renene.2007.07.010

    Article  CAS  Google Scholar 

  26. X. Liu, H. Xu, G. Liu, W. Duand, Y. Zhang, X. Fan, R. Riedel, Electromagnetic shielding performance of SiC/graphitic carbon-SiCN porous ceramic nanocomposites derived from catalyst assisted single-source-precursors. J. Eur. Ceram. Soc. 41, 4806–4814 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.026

    Article  CAS  Google Scholar 

  27. B.Y. Nan, Y.S. Liu, Q.W. You, J.X. Li, F. Ye, L.F. Cheng, Electromagnetic interference shielding performance of alternatively-deposited multilayer SiC/PyC porous ceramics. Ceram. Int. 45, 21483–21490 (2019). https://doi.org/10.1016/j.ceramint.2019.07.139

    Article  CAS  Google Scholar 

  28. S.Z.A. Bukhari, M.S. Anwar, D. Naseer, J.H. Ha, J. Lee, I.H. Song, Effect of graphite and Mn3O4 on clay-bonded SiC ceramics for the production of electrically conductive heatable filter. Ceram. Int. 47, 23045–23052 (2021). https://doi.org/10.1016/j.ceramint.2021.05.019

    Article  CAS  Google Scholar 

  29. S. Kultayeva, Y.W. Kim, I.H. Song, Influence of sintering atmosphere and BN additives on microstructure and properties of porous SiC ceramics. J. Eur. Ceram. Soc. (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.07.039

    Article  Google Scholar 

  30. S. Kultayeva, Y.W. Kim, I.H. Song, Effects of dopants on electrical, thermal, and mechanical properties of porous SiC ceramics. J. Eur. Ceram. Soc. 41, 4006–4015 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.01.049

    Article  CAS  Google Scholar 

  31. S. Rajpoot, J.H. Ha, Y.W. Kim, Effects of initial particle size on mechanical, thermal, and electrical properties of porous SiC ceramics. Ceram. Int. 47, 8668–8676 (2020). https://doi.org/10.1016/j.ceramint.2020.11.238

    Article  CAS  Google Scholar 

  32. R. Malik, Y.W. Kim, Effects of initial α-phase content on properties of pressureless solid-state sintered SiC ceramics. Int. J. Appl. Ceram. Tec. 19, 703–712 (2021). https://doi.org/10.1111/ijac.13892

    Article  CAS  Google Scholar 

  33. K.J. Kim, K.Y. Lim, Y.W. Kim, M.J. Lee, W.S. Seo, Electrical resistivity of alpha-SiC ceramics sintered with Al2O3 or AlN additives. J. Eur. Ceram. Soc. 34, 1695–1701 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.01.004

    Article  CAS  Google Scholar 

  34. K.J. Kim, K.Y. Lim, Y.W. Kim, Electrical and thermal properties of SiC ceramics sintered with yttria and nitrides. J. Am. Ceram. Soc. 97, 2943–2949 (2014). https://doi.org/10.1111/jace.13031

    Article  CAS  Google Scholar 

  35. K.Y. Lim, Y.W. Kim, K.J. Kim, Mechanical properties of electrically conductive silicon carbide ceramics. Ceram. Int. 40, 10577–10582 (2014). https://doi.org/10.1016/j.ceramint.2014.03.036

    Article  CAS  Google Scholar 

  36. H.Q. Liang, X.M. Yao, H. Deng, H. Zhang, X.J. Liu, Z.R. Huang, High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives. J. Eur. Ceram. Soc. 35, 399–403 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.025

    Article  CAS  Google Scholar 

  37. D.H. Yoon, I.E. Reimanis, A review on the joining of SiC for high-temperature applications. J. Korean Ceram. Soc. 57, 246–270 (2020). https://doi.org/10.1007/s43207-020-00021-4

    Article  CAS  Google Scholar 

  38. S.Q. Ding, S.M. Zhu, Y.P. Zeng, D.L. Jiang, Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding. J. Eur. Ceram. Soc. 27, 2095–2102 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.06.003

    Article  CAS  Google Scholar 

  39. S.P. Chaudhuri, S.K. Patra, A.K. Chakraborty, Electrical resistivity of transition metal ion doped mullite. J. Eur. Ceram. Soc. 19, 2941–2950 (1999). https://doi.org/10.1016/S0955-2219(99)00058-8

    Article  CAS  Google Scholar 

  40. J. Kim, J.H. Ha, J. Lee, I.H. Song, Optimization for permeability and electrical resistance of porous alumina-based ceramics. J. Korean Ceram. Soc. 53, 548–556 (2016). https://doi.org/10.4191/kcers.2016.53.5.548

    Article  CAS  Google Scholar 

  41. J. Kim, J.-H. Ha, J. Lee, I.H. Song, The effect of MnO2 content on the permeability and electrical resistance of porous alumina-based ceramics. J. Korean Ceram. Soc. 54, 331–339 (2017). https://doi.org/10.4191/kcers.2017.54.4.07

    Article  CAS  Google Scholar 

  42. S. Rajpoot, J.H. Ha, Y.W. Kim, K.J. Kim, Electrical, thermal, and mechanical properties of porous SiC-nitride composites. J. Eur. Ceram. Soc. 40, 3851–3862 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.04.018

    Article  CAS  Google Scholar 

  43. B.R. Manso, F.M. Figueiredo, B. Achiaga, R. Barea, D.P. Coll, A.M. Gomez, M. Terrones, M.I. Osendi, M. Belmonte, P. Miranzo, Electrically functional 3D-architectured graphene/SiC composites. Carbon 100, 318–328 (2016). https://doi.org/10.1016/j.carbon.2015.12.103

    Article  CAS  Google Scholar 

  44. K.F. Cai, J.P. Liu, C.W. Nan, X.M. Min, Effect of porosity on the thermal-electric properties of Al-doped SiC ceramics. J. Mater. Sci. Lett. (1997). https://doi.org/10.1023/A:1018557827330

    Article  Google Scholar 

  45. Y. Takeda, K. Nakamura, K. Maeda, Y. Matsushi, Effects of elemental additives on electrical resistivity of silicon carbide ceramics. J. Am. Cermn. Soc. 70, 266–267 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04895.x

    Article  Google Scholar 

  46. M.S. Anwar, S.Z.A. Bukhari, J.H. Ha, J. Lee, I.H. Song, Effect of Ni content and its particle size on electrical resistivity and flexural strength of porous SiC ceramic sintered at low-temperature using clay additive. Ceram. Int. 47, 31536–31547 (2021). https://doi.org/10.1016/j.ceramint.2021.08.032

    Article  CAS  Google Scholar 

  47. P. Bazhin, A. Chizhikov, A. Stolin, M. Antipov, A. Konstantinov, Long-sized rods of Al2O3–SiC–TiB2 ceramic composite material obtained by SHS-extrusion: microstructure. X-ray analysis and properties. Ceram. Int. 47, 28444–28448 (2021). https://doi.org/10.1016/j.ceramint.2021.06.262

    Article  CAS  Google Scholar 

  48. S.L. Byoungkwan Kim, Review on characteristics of metakaolin-based geopolymer and fast setting. J. Korean Ceram. Soc. 57, 368–377 (2020). https://doi.org/10.1007/s43207-020-00043-y

    Article  CAS  Google Scholar 

  49. S. Lee, Y.J. Kim, H.S. Moon, Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. J. Am. Ceram. Soc. 82, 2841–2848 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02165.x

    Article  CAS  Google Scholar 

  50. T. Kusunose, T. Sekino, Increasing resistivity of electrically conductive ceramics by insulating grain boundary phase. Acs Appl. Mater. Int. 6, 2759–2763 (2014). https://doi.org/10.1021/am4052766

    Article  CAS  Google Scholar 

  51. O. Carvalho, S. Madeira, M. Buciumeanu, D. Soares, F.S. Silva, G. Miranda, Pressure and sintering temperature influence on the interface reaction of SiCp/410L stainless steel composites. J. Compos. Mater. 50, 2005–2015 (2016). https://doi.org/10.1177/0021998315598851

    Article  CAS  Google Scholar 

  52. J.L. Hongming Zhou, D. Yi, L. Xiao, Effect of manganese oxide on the sintered properties of 8ysz. Phys. Proc. 22, 14–19 (2011). https://doi.org/10.1016/j.phpro.2011.11.005

    Article  CAS  Google Scholar 

  53. J.B.P. Casey, J.G. Lozano, P.D. Nellist, G. Hughes, Chemical and structural investigation of the role of both Mn and Mn oxide in the formation of manganese silicate barrier layers on SiO2. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3630123

    Article  Google Scholar 

  54. I.H. Jung, Y.B. Kang, S.A. Decterov, A.D. Pelton, Thermodynamic evaluation and optimization of the MnO-Al2O3 and MnO-Al2O3-SiO2 systems and applications to inclusion engineering. Metall. Mater. Trans. B. 35, 259–268 (2004). https://doi.org/10.1007/s11663-004-0027-3

    Article  Google Scholar 

  55. R.B. Snow, Equilibrium relationships on the liquidus surface in part of the MnO-Al2O3-SiO2 system. J. Am. Ceram. Soc. 26, 11–20 (1943). https://doi.org/10.1111/j.1151-2916.1943.tb15177.x

    Article  CAS  Google Scholar 

  56. C. Byrne, B. Brennan, A.P. McCoy, J. Bogan, A. Brady, G. Hughes, In situ xps chemical analysis of MnSiO3 copper diffusion barrier layer formation and simultaneous fabrication of metal oxide semiconductor electrical test mos structures. Acs Appl Mater Inter. 8, 2470–2477 (2016). https://doi.org/10.1021/acsami.5b08044

    Article  CAS  Google Scholar 

  57. D. Dotlimord, Differential thermal analysis and therrnogravimetric analysis studies at salford on metal oxy-salts, coals and polymers. Proc. Soc. Anal. Chem. 2, 167–172 (1965). https://doi.org/10.1039/SA9650200167

    Article  Google Scholar 

  58. C. Soto, C.G. Rosales, J. Echeberria, E. Platacis, A. Shisko, F. Muktepavela, T. Hernandez, M.M. Huertac, Development, characterization, and testing of a SiC-based material for flow channel inserts in high-temperature DCLL blankets. Ieee T Plasma Sci. 46, 1561–1569 (2018). https://doi.org/10.1109/Tps.2018.2809571

    Article  CAS  Google Scholar 

  59. N. Ordas, A. Bereciartu, C.G. Rosales, A. Morono, M. Malo, E.R. Hodgson, J. Abella, S. Colominas, L. Sedano, Testing of porous SiC with dense coating under relevant conditions for Flow Channel Insert application. Fusion Eng. Des. 89, 1274–1279 (2014). https://doi.org/10.1016/j.fusengdes.2014.03.056

    Article  CAS  Google Scholar 

  60. H.P. Martin, J. Adler, Electrical properties, in Cellular ceramics: structure, manufacturing, properties and applications. ed. by D.M. Scheffler, P.I.P. Colombo (Wiley, 2005), pp.289–399. https://doi.org/10.1002/3527606696.ch4d

    Chapter  Google Scholar 

  61. J.M. Montes, F.G. Cuevas, J. Cintas, F. Ternero, E.S. Caballero, Electrical resistivity of powdered porous compacts, in Electrical and Electronic Properties of Materials. ed. by M.K. Alam (IntechOpen, 2019). https://doi.org/10.5772/intechopen.76159

    Chapter  Google Scholar 

  62. J.H. Eom, Y.W. Kim, I.H. Song, H.D. Kim, Microstructure and properties of porous silicon carbide ceramics fabricated by carbothermal reduction and subsequent sintering process. Mat. Sci. Eng. A-Struct. 464, 129–134 (2007). https://doi.org/10.1016/j.msea.2007.03.076

    Article  CAS  Google Scholar 

  63. Y.F. Chen, M.C. Wang, M.H. Hon, Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 24, 2389–2397 (2004). https://doi.org/10.1016/S0955-2219(03)00631-9

    Article  CAS  Google Scholar 

  64. R. Sarkar, M. Mallick, Formation and densification of mullite through solid-oxide reaction technique using commercial-grade raw materials. Bull. Mater. Sci. (2018). https://doi.org/10.1007/s12034-017-1533-7

    Article  Google Scholar 

  65. F.R. Barrientos-Hernandez, M. Perez-Labra, A. Lobo-Guerrero, M. Reyes-Perez, J.C. Juarez-Tapia, J. Hernandez-Avila, E. Cardoso-Legorreta, J.P. Hernandez-Lara, Effect of particle size and sintering temperature on the formation of mullite from kyanite and aluminum mixtures. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/6678297

    Article  Google Scholar 

  66. D. Das, N. Kayal, Influence of clay content on microstructure and flexural strength of in situ reaction bonded porous SiC ceramics. Mater. Today Proc. 33, 5150–5155 (2020). https://doi.org/10.1016/j.matpr.2020.02.862

    Article  CAS  Google Scholar 

  67. J.F. Li, H. Lin, J.B. Li, Factors that influence the flexural strength of SiC-based porous ceramics used for hot gas filter support. J. Eur. Ceram. Soc. 31, 825–831 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.11.033

    Article  CAS  Google Scholar 

  68. Z.Y. Luo, W. Han, K.Q. Liu, W.Q. Ao, K.K. Si, Influence of bonding phases on properties of in-situ bonded porous SiC membrane supports. Ceram. Int. 46, 8536–8542 (2020). https://doi.org/10.1016/j.ceramint.2019.12.082

    Article  CAS  Google Scholar 

  69. W. Wang, W.J. Chen, H.T. Liu, Recycling of waste red mud for fabrication of SiC/mullite composite porous ceramics. Ceram. Int. 45, 9852–9857 (2019). https://doi.org/10.1016/j.ceramint.2019.02.024

    Article  CAS  Google Scholar 

  70. S.Z.A. Bukhari, J.H. Ha, J. Lee, I.H. Song, Expansionless oxidation-bonded SiC microfiltration membrane by controlling the oxidation of SiC particle mixtures. J Asian Ceram Soc. (2021). https://doi.org/10.1080/21870764.2021.1937855

    Article  Google Scholar 

  71. A. Septiadi, D.H. Yoon, Fabrication of mullite-bonded porous SiC usingTi3AlC2 max phase. J Korean Ceram Soc. 56, 191–196 (2019). https://doi.org/10.4191/kcers.2019.56.2.11

    Article  CAS  Google Scholar 

  72. F. Wang, J. Yin, K. Zuo, Y. Xia, D. Yao, Y. Zeng, Effect of organic additives on mechanical properties of SiC ceramics prepared by a modified gelcasting method. Process. Appl. Ceram. 10, 227–233 (2016). https://doi.org/10.2298/PAC1604227W

    Article  CAS  Google Scholar 

  73. M.H. Zare, N. Hajilary, M. Rezakazemi, Microstructural modifications of polyethylene glycol powder binder inthe processing of sintered alpha alumina under different conditions ofpreparation. Mater. Sci. Energy Technol. 2, 89–95 (2019). https://doi.org/10.1016/j.mset.2018.11.003

    Article  Google Scholar 

  74. R.H.C.-E.A. Balam, A. Castillo-Atoche, F. Avile’s, Investigation of directional effects on the electrical conductivity and piezoresistivity of carbon nanotube/polypropylene composites obtained by extrusion. J Mater Sci. 56, 14570–14586 (2021). https://doi.org/10.1007/s10853-021-06223-3

    Article  CAS  Google Scholar 

  75. Z. Zhang, Z. Shi, B. Yang, B. Ge, X. Zhang, Y. Guo, Preparation and anisotropic thermophysical properties of SiC honeycomb/Al-Mg-Si composite via spontaneous infiltration. Prog. Nat. Sci-Mater. 29, 177–183 (2019). https://doi.org/10.1016/j.pnsc.2019.02.004

    Article  CAS  Google Scholar 

  76. A. Kovalcikova, J. Sedlacek, Z. Lences, R. Bystricky, J. Dusza, P. Sajgalik, Oxidation resistance of SiC ceramics prepared by different proceessing routes. J. Eur. Ceram. Soc. 36, 3783–3793 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.03.016

    Article  CAS  Google Scholar 

  77. R. Malik, Y.H. Kim, Y.W. Kim, Effect of additive content on the mechanical and thermal properties of pressureless liquid-phase sintered SiC. J. Asian Ceram. Soc. 8, 448–459 (2020). https://doi.org/10.1080/21870764.2020.1749376

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by (1) National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT [Grant number 2020M3H4A3106359] and (2) the Research Program of the Korea Institute of Materials Science (Republic of Korea) [Grant number PNK 8120].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Hyuck Song.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, M.S., Bukhari, S.Z.A., Ha, JH. et al. Mullite-bonded porous SiC-based Mn3O4–Ni system: control of electrical resistivity, flexural strength, and extrusion. J. Korean Ceram. Soc. 59, 835–845 (2022). https://doi.org/10.1007/s43207-022-00238-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00238-5

Keywords

Navigation