Skip to main content
Log in

Dielectric, electrical and optical properties of aluminosilicate ceramics synthesized by solid-state reaction route

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The conventional high-temperature solid-state reaction technique is used to synthesize aluminosilicate ceramics of three different compositions (Al0.70Si0.30O, Al0.73Si0.27O, Al0.75Si0.25O). These aluminosilicate ceramics are systematically investigated by XRD, FTIR, SEM, dielectric, electrical, and UV–visible analysis. The polycrystalline ceramics are well synthesized at a sintering temperature of 1450 °C, confirmed from XRD studies. The IR interferogram reveals the presence of mullite (3Al2O3⋅2SiO2)-type molecules in these aluminosilicate ceramics. The SEM images show the formation of homogeneous microstructures with appreciable density. The room temperature dielectric constant values for Al0.70Si0.30O, Al0.73Si0.27O, Al0.75Si0.25O ceramics are 1.5, 1.8, and 1.7 at 1 MHz frequency with dielectric loss values of 0.02, 0.04, and 0.06 respectively. The ac conductivity spectrum of these samples obeys the Arrhenius equation and the classical correlated barrier hopping model governs the conduction mechanism in these ceramics. Complex impedance analysis confirms the contribution of both grain and grain boundary towards transport processes in these ceramics. The UV–visible spectrum reveals that the synthesized ceramics, Al0.70Si0.30O, Al0.73Si0.27O, and Al0.75Si0.25O have a wide-band-gap of the order of 3.45 eV, 3.42 eV, and 3.39 eV respectively. These ceramics can be preferably used as electronic substrates, packaging material for high-frequency circuits, and infrared transmitting window materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13

Similar content being viewed by others

References

  1. S. Sembiring, W. Simanjuntak, Makara. J. Sci. 16, 77–82 (2012)

    Google Scholar 

  2. V. Yadav, P. Saxena, C. Lal, P. Kumar, Int. J. Appl. Nanotechnol. Res. 5, 10–24 (2021)

    Google Scholar 

  3. J. Anggono, J. Teknik Mesin Univ. Kristen Petra. 7, 1–10 (2005)

    Google Scholar 

  4. I.A. Akshay, J.A. Pask, J. Am. Ceram. Soc. 58, 507–512 (1975)

    Google Scholar 

  5. H. Schneider, R.X. Fischer, J. Schreuer, J. Am. Ceram. Soc. 98, 2948–2967 (2015)

    CAS  Google Scholar 

  6. H. Schneider, J. Schreuer, B. Hildmann, J. Eur. Ceram. Soc. 28, 329–344 (2008)

    CAS  Google Scholar 

  7. R.C. Bradt, The Sillimanite Minerals: Andalusite, Kyanite, and Sillimanite—Ceramic and Glass Materials (Springer, Boston, 2008), pp. 41–48

    Google Scholar 

  8. R. Vila, M. Gonzalez, J. Molla, A. Ibarra, J. Nucl. Mater. 253, 141–148 (1998)

    CAS  Google Scholar 

  9. J.L. Sprague, IEEE Trans Comp. Hybrids Manuf. Technol. 13, 390–396 (1990)

    CAS  Google Scholar 

  10. M. Zawrah, N.M. Khalil, J. Ceram. Int. 27, 689–694 (2001)

    CAS  Google Scholar 

  11. M. Sardy, A. Arib, K. Abbassi, R. Moussa, M. Gomina, New J. Glass Ceram. 2, 21446–21451 (2012)

    Google Scholar 

  12. P. Kurzweil, in Encyclopedia of Electrochemical Power Sources. ed. by J. Garche (Elsevier, Amsterdam, 2009), pp. 600–606

    Google Scholar 

  13. B.K. Paul, K. Halder, D. Roy, B. Bagchi, A. Bhattacharya, S. Das, J. Mater. Sci. Mater. Electron. 25, 5218–5225 (2014)

    CAS  Google Scholar 

  14. B. Amrane, E. Ouedraogo, B. Mamen, S. Djaknoun, N. Mesrati, J. Ceram. Int. 37, 3217–3227 (2011)

    CAS  Google Scholar 

  15. M.F. Serra, M.S. Conconi, M.R. Gauna, G. Saurez, E.F. Aglietti, N.F. Rendtorff, J. Asian Ceram. Soc. 4, 61–67 (2016)

    Google Scholar 

  16. M.S. Abdi, T. Ebadzadeh, J. Ceram. Int. 39, 1451–1454 (2013)

    CAS  Google Scholar 

  17. R. Sarkar, M. Mallick, Bull. Mater. Sci. 41, 31 (2018). (1–8)

    Google Scholar 

  18. D. Roy, B. Bagchi, S. Das, P. Nandy, Mater. Chem. Phys. 138, 375–383 (2013)

    CAS  Google Scholar 

  19. P.D.D. Rodrigo, P. Boch, Int. J. High Technol. Ceram. 1, 3–30 (1985)

    CAS  Google Scholar 

  20. C. Kaya, J.Y. He, X. Gu, E.G. Butler, Microporous. Mesoporous. Mater. 54, 37–49 (2002)

    CAS  Google Scholar 

  21. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, J. Eur. Ceram. Soc. 32, 4249–4255 (2012)

    CAS  Google Scholar 

  22. E. Ghasali, Y. Orooji, A. Faeghinia, M. Alizadeh, T. Ebadzadeh, J. Ceram. Int. 47, 16200–16207 (2021)

    CAS  Google Scholar 

  23. I.A. Aksay, D.M. Dabbs, M. Sarikaya, J. Am. Ceram. Soc. 74, 2343–2358 (1991)

    CAS  Google Scholar 

  24. A. Abdullayev, F. Zemke, A. Gurlo, M.F. Bekheet, RSC Adv. 10, 31180–31186 (2020)

    CAS  Google Scholar 

  25. C. Zanelli, M. Dondi, M. Raimondo, G. Guarini, J. Eur. Ceram. Soc 30, 29–35 (2010)

    CAS  Google Scholar 

  26. L. Chen, Z. Wang, S. Hu, X. Qin, Z. Xue, G. Zhou, S. Wang, J. Ceram. Int. 47, 13762–13768 (2021)

    CAS  Google Scholar 

  27. H. Pooladvand, B. Mirhadi, S. Baghshahi, A.R. Souri, K. Arzani, Adv. Appl. Ceram. 108, 389–395 (2009)

    CAS  Google Scholar 

  28. R. Goren, B. Ersoy, C. Ozgur, T. Alp, J. Ceram. Int. 38, 679–685 (2012)

    CAS  Google Scholar 

  29. A.E. Panasenko, E. Tsoy, BioResources 10, 3713–3723 (2015)

    Google Scholar 

  30. N.P. Damayanti, J. Sol-Gel, Sci. Technol. 56, 47–52 (2010)

    CAS  Google Scholar 

  31. A. Bertoluzaa, C. Fagnano, M.A. Moreli, V. Gottardi, J. Non Cryst. 53, 279 (1982)

    Google Scholar 

  32. J. Roy, N. Bandyopadhyay, S. Das, S. Maitra, Iran. J. Chem. Chem. Eng. 30, 65–71 (2011)

    CAS  Google Scholar 

  33. B.S. Musialska, D. Szwagierczak, J. Kulawik, N. Palka, P. Piasecki, Materials 14, 4030 (2021)

    Google Scholar 

  34. M.M. Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Mater. Res. Bull. 47, 3952–3958 (2012)

    Google Scholar 

  35. A. Yadav, S.P. Mantry, M. Fahad, P.M. Sarun, Phys. B Condens. Mater. 537, 290–295 (2018)

    CAS  Google Scholar 

  36. S. Upadhyay, A.K. Sahu, D. Kumar, O. Parkash, J. Appl. Phys. 84, 828–832 (1998)

    CAS  Google Scholar 

  37. A.K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, K. Prasad, IRSN Ceram. 7, 854831 (2012)

    Google Scholar 

  38. U. Mohan, P. Gogoi, S.K. Baruah, Orient. J. Chem. 32, 1003–1014 (2016)

    CAS  Google Scholar 

  39. Z. Raddaoui, J. Mater. Sci. Mater. Electron. 32, 12 (2021)

    Google Scholar 

  40. A.M. Ahmed, G. Papavassiliou, H.F. Mohamed, E.M.M. Ibrahim, J. Magn. Magn. Mater. 392, 27–41 (2015)

    CAS  Google Scholar 

  41. B. Biswal, D.K. Mishra, J. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2021.12.178

    Article  Google Scholar 

  42. T.A.M. Ondal, S.A.D. As, T.P.S. Inha, P.M.S. Arun, Mater. Sci. Pol. 36, 112–122 (2018)

    Google Scholar 

  43. A.K. Mall, A. Garg, R. Gupta, J. Eur. Ceram. Soc. 38, 5359–5366 (2018)

    CAS  Google Scholar 

  44. R. Jacob, H.G. Nair, J. Isac, Process. Appl. Ceram. 9, 73–79 (2015)

    Google Scholar 

  45. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton Trans. 44, 10457 (2015)

    CAS  Google Scholar 

  46. C. Bouzidi, N. Sdiri, A. Boukhachem, H. Elhouichet, M. Ferid, Superlattices. Microstr. 82, 559–573 (2015)

    CAS  Google Scholar 

  47. S. Filipovic, V.P. Pavlovic, N. Obradovic, V. Paunovic, K. Maca, V.B. Pavlovic, J. Alloy. Compd. 701, 107–115 (2017)

    CAS  Google Scholar 

  48. S. Manzoor, S. Husain, A. Somvanshi, M. Fatema, J. Appl. Phys. 128, 064101 (2020)

    CAS  Google Scholar 

  49. Z. Raddaoui, R. Brahem, A. Bajahzar, H.M.M. Albetran, D. Jemai, J. Mater. Sci. Mater. Electron. 32, 18 (2021)

    Google Scholar 

  50. H.D. Ko, C.C. Lin, K.C. Chiu, J. Mater. Res. 23, 2125–2132 (2008)

    CAS  Google Scholar 

  51. B. Kaur, L. Singh, T. Garg, D.Y. Jeong, N. Dabra, J.S. Hundal, Ferroelectr. Lett. Sect. 46, 52–63 (2019)

    CAS  Google Scholar 

  52. P.A. Prashanth, R.S. Raveendra, R.H. Krishna, H. Ananda, H.R. Naika, J. Asian Ceram. Soc. 3, 345–351 (2015)

    Google Scholar 

  53. B. Biswal, D.K. Mishra, S.N. Das, S. Bhuyan, J. Ceram. Int. 47, 32252–32263 (2021)

    CAS  Google Scholar 

  54. S. Aryal, P. Rulis, W.Y. Ching, J. Am. Ceram. Soc. 95, 2075–2088 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, B., Mishra, D.K., Mohapatra, J. et al. Dielectric, electrical and optical properties of aluminosilicate ceramics synthesized by solid-state reaction route. J. Korean Ceram. Soc. 59, 614–630 (2022). https://doi.org/10.1007/s43207-022-00193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00193-1

Keywords

Navigation