Skip to main content
Log in

Crystallographic structure and ferroelectricity of epitaxial hafnium oxide thin films

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Devices using silicon-based materials have been studied and developed by the semiconductor industry. With silicon-based materials reaching their performance limit, there have been attempts to develop and discover alternative materials. Recently, HfO2 thin films have been considered a candidate material because of their diverse characteristics and potential for application in future memory devices. High-k-gate dielectric-based HfO2 thin films can replace silicon-based gate oxide layers. Moreover, HfO2 has been reported to possess ferroelectric properties in polycrystalline films, as also seen in memory devices. Hence, it is important to analyze the phase, structure, and crystallinity of HfO2 to confirm its ferroelectric properties; however, it has been challenging to do the same for pure HfO2 thus far. HfO2 thin films are ferroelectric in their orthorhombic or rhombohedral phase. The epitaxial growth of HfO2 thin films makes it possible to analyze the properties of each phase. Following the first report in 2015 on the epitaxial growth of HfO2 films, researchers have extensively studied their growth methods, structural and ferroelectric properties, phases, and application potential for future memory devices. This review summarizes the crystal structure, phases, deposition methods, and epitaxial growth mechanism of HfO2 thin films, as well as devices based on them. The findings will aid in next-generation device research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Copyright 2015 AIP Publishing)

Fig. 2

Copyright 2001 John Wiley and Sons)

Fig. 3

Copyright 2011 AIP Publishing LLC)

Fig. 4

Copyright 2020 by the American Physical Society)

Fig. 5

Copyright 2019 American Chemical Society)

Fig. 6

Copyright 2019 American Chemical Society)

Fig. 7

Copyright 2016, Shimizu et al.)

Fig. 8

Copyright 2016; Shimizu et al.)

Fig. 9

Copyright 2020 American Chemical Society)

Fig. 10

Copyright 2020, American Chemical Society)

Similar content being viewed by others

References

  1. K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE. 91(2), 305 (2003)

    Article  CAS  Google Scholar 

  2. J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. 88, 1 (2015)

    Article  Google Scholar 

  3. T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide thin films. App. Phy. Lett. 99(10), 102903 (2011)

    Article  Google Scholar 

  4. J.M. Khoshman, M.E. Kordesch, Optical properties of a-HfO2 thin films. Surf. Coat. Technol. 201(6), 3530 (2006)

    Article  CAS  Google Scholar 

  5. M. Trentzsch, S. Flachowsky, R. Richter, J. Paul, B. Reimer, D. Utess, S. Jansen, H. Mulaosmanovic, S. Müller and S. Slesazeck: A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs, in 2016 IEEE International Electron Devices Meeting (IEDM), (IEEE, City, 2016), pp. 11.5. 1.

  6. S. Krishnan, U. Kwon, N. Moumen, M. Stoker, E. Harley, S. Bedell, D. Nair, B. Greene, W. Henson and M. Chowdhury: A manufacturable dual channel (Si and SiGe) high-k metal gate CMOS technology with multiple oxides for high performance and low power applications, in 2011 International Electron Devices Meeting, (IEEE, City, 2011), pp. 28.1. 1.

  7. E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. van Bentum, U. Schroeder, T. Mikolajick, Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories. IEEE Transact. Electron Devices 63(9), 3501 (2016)

    Article  CAS  Google Scholar 

  8. Z. Dong, X. Cao, T. Wu, J. Guo, Tunneling current in HfO2 and Hf0. 5Zr0. 5O2-based ferroelectric tunnel junction. J. Appl. Phy. 123(9), 094501 (2018)

    Article  Google Scholar 

  9. H. Yoo, J. Kim, Z. Zhu, Y. Choi, A. Yoon, M. MacDonald, X. Lei, T. Lee, D. Lee and S. Chae: Engineering of ferroelectric switching speed in Si doped HfO 2 for high-speed 1T-FERAM application, in 2017 IEEE International Electron Devices Meeting (IEDM), (IEEE, City, 2017), pp. 19.6. 1.

  10. A. Bhalla, R. Guo, R. Roy, The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4(1), 3 (2000)

    Article  CAS  Google Scholar 

  11. A. Lipatov, A. Fursina, T.H. Vo, P. Sharma, A. Gruverman, A. Sinitskii, Polarization-dependent electronic transport in graphene/Pb (Zr, Ti) O3 ferroelectric field-effect transistors. Adv. Electron. Mater. 3(7), 1700020 (2017)

    Article  Google Scholar 

  12. Z. Li, X. Guo, H.B. Lu, Z. Zhang, D. Song, S. Cheng, M. Bosman, J. Zhu, Z. Dong, W. Zhu, An epitaxial ferroelectric tunnel junction on silicon. Adv. Mater. 26(42), 7185 (2014)

    Article  CAS  Google Scholar 

  13. K. Yamakawa, K. Imai, O. Arisumi, T. Arikado, M. Yoshioka, T. Owada, K. Okumura, Novel Pb (Ti, Zr) O3 (PZT) crystallization technique using flash lamp for ferroelectric RAM (FeRAM) embedded LSIs and one transistor type FeRAM devices. Jpn J Appl Phy. 41(4S), 2630 (2002)

    Article  CAS  Google Scholar 

  14. H.-J. Lee, M. Lee, K. Lee, J. Jo, H. Yang, Y. Kim, S.C. Chae, U. Waghmare, J.H. Lee, Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 369(6509), 1343 (2020)

    Article  CAS  Google Scholar 

  15. T. Shimizu, K. Katayama, T. Kiguchi, A. Akama, T.J. Konno, H. Funakubo, Growth of epitaxial orthorhombic YO1. 5-substituted HfO2 thin film. Appl. Phys. Lett. 107(3), 032910 (2015)

    Article  Google Scholar 

  16. S. Desgreniers, K. Lagarec, High-density ZrO2 and HfO2: crystalline structures and equations of state. Phy. Rev. B. 59(13), 8467 (1999)

    Article  CAS  Google Scholar 

  17. J. Lowther, J. Dewhurst, J. Leger, J. Haines, Relative stability of ZrO2 and HfO2 structural phases. Phy. Rev. B. 60(21), 14485 (1999)

    Article  CAS  Google Scholar 

  18. J. Wang, H. Li, R. Stevens, Hafnia and hafnia-toughened ceramics. J. Mater. Sci. 27(20), 5397 (1992)

    Article  CAS  Google Scholar 

  19. R. Materlik, C. Künneth, A. Kersch, The origin of ferroelectricity in Hf1− xZrxO2: a computational investigation and a surface energy model. J. Appl. Phy. 117(13), 134109 (2015)

    Article  Google Scholar 

  20. J. Adam, M. Rogers, The crystal structure of ZrO2 and HfO2. Acta. Crystallographica. 12(11), 951 (1959)

    Article  CAS  Google Scholar 

  21. H. Arashi, Pressure-induced phase transformation of HfO2. J. Am. Ceram. Soc. 75(4), 844 (1992)

    Article  CAS  Google Scholar 

  22. A. Jayaraman, S. Wang, S. Sharma, L. Ming, Pressure-induced phase transformations in HfO2 to 50 GPa studied by Raman spectroscopy. Phys. Rev. B. 48(13), 9205 (1993)

    Article  CAS  Google Scholar 

  23. J.M. Leger, A. Atouf, P. Tomaszewski, A.S. Pereira, Pressure-induced phase transitions and volume changes in HfO2 up to 50 GPa. Phy. Rev. B. 48(1), 93 (1993)

    Article  CAS  Google Scholar 

  24. O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, T. Kikegawa, Phase relations and volume changes of hafnia under high pressure and high temperature. J. Am. Ceram. Soc. 84(6), 1369 (2001)

    Article  CAS  Google Scholar 

  25. R. Ruh, V.A. Patel, Proposed phase relations in the HfO2-rich portion of the system Hf-HfO2. J. Am. Ceram. Soc. 56(11), 606 (1973)

    Article  CAS  Google Scholar 

  26. R. Ruh, H. Garrett, R. Domagala, N. Tallan, The Svstern Zirconia-Hafnia. J. Am. Ceram. Soc. 51(1), 23 (1968)

    Article  CAS  Google Scholar 

  27. K. Seema and R. Kumar: The structural and electronic properties of HfO2, in AIP Conference Proceedings, (1447, American Institute of Physics, City, 2012), pp. 1077

  28. T. Tobase, A. Yoshiasa, H. Arima, K. Sugiyama, O. Ohtaka, T. Nakatani, K.I. Funakoshi, S. Kohara, Pre-transitional behavior in tetragonal to cubic phase transition in HfO2 revealed by high temperature diffraction experiments. Physica Status Solidi (b) 255(11), 1800090 (2018)

    Article  Google Scholar 

  29. J.I. Beltran, M. Muñoz, J. Hafner, Structural, electronic and magnetic properties of the surfaces of tetragonal and cubic HfO2. New J. Phys. 10(6), 063031 (2008)

    Article  Google Scholar 

  30. P. Duran, C. Pascual, Phase equilibria and ordering in the system HfO2-Yb2O3. J. Mater. Sci. 19(4), 1178 (1984)

    Article  CAS  Google Scholar 

  31. E.M. Modan, A.G. Plăiașu, Advantages and disadvantages of chemical methods in the elaboration of nanomaterials. Annal “Dunarea de Jos” University of Galati. Fascicle IX, Metal. Mater. Sci. 43(1), 53 (2020)

    CAS  Google Scholar 

  32. T. Nishide, S. Honda, M. Matsuura, M. Ide, Surface, structural and optical properties of sol-gel derived HfO2 films. Thin Solid Films. 371(1–2), 61 (2000)

    Article  CAS  Google Scholar 

  33. H. Shimizu, K. Asayama, N. Kawai, T. Nishide, Material microcharacterization of sol–gel derived HfO2 thin films on silicon wafers. Jpn J Appl. Phy. 43(10R), 6992 (2004)

    Article  CAS  Google Scholar 

  34. H.-C. You, T.-H. Hsu, F.-H. Ko, J.-W. Huang, W.-L. Yang, T.-F. Lei, SONOS-type flash memory using an HfO/sub 2/as a charge trapping layer deposited by the sol–gel spin-coating method. IEEE Electron Device Lett. 27(8), 653 (2006)

    Article  CAS  Google Scholar 

  35. H. Shimizu, D. Nemoto, M. Ikeda, T. Nishide, Characteristics of sol–gel-derived and crystallized HfO2 thin films dependent on sol solution. Jpn J. Appl. Phys. 49(12R), 121502 (2010)

    Article  Google Scholar 

  36. P. Jin, G. He, D. Xiao, J. Gao, M. Liu, J. Lv, Y. Liu, M. Zhang, P. Wang, Z. Sun, Microstructure, optical, electrical properties, and leakage current transport mechanism of sol–gel-processed high-k HfO2 gate dielectrics. Ceram Int. 42(6), 6761 (2016)

    Article  CAS  Google Scholar 

  37. A. Ramadoss, K. Krishnamoorthy, S.J. Kim, Resistive switching behaviors of HfO2 thin films by sol–gel spin coating for nonvolatile memory applications. Appl. Phy. Express. 5(8), 085803 (2012)

    Article  Google Scholar 

  38. M. Kumar, H. Jeong, D. Lee, Effect of UV/ozone plasma treatment on sol–gel-derived HfO2 thin films. Ceram. Int. 43(1), 1174 (2017)

    Article  CAS  Google Scholar 

  39. M.S. Rao, A. Sánchez-Martinez, G. Gutiérrez-Heredia, M.A. Quevedo-López, R. Ramírez-Bon, Sol–gel derived low temperature HfO2-GPTMS hybrid gate dielectric for a-IGZO thin-film transistors (TFTs). Ceram. Int. 44(14), 16428 (2018)

    Article  CAS  Google Scholar 

  40. M. Villanueva-Ibanez, C. Le Luyer, O. Marty, J. Mugnier, Annealing and doping effects on the structure of europium-doped HfO2 sol–gel material. Optical Mater. 24(1–2), 51 (2003)

    Article  CAS  Google Scholar 

  41. Y. Aoki, T. Kunitake, A. Nakao, Sol−gel fabrication of dielectric HfO2 nano-films; formation of uniform, void-free layers and their superior electrical properties. Chem. Mater. 17(2), 450 (2005)

    Article  CAS  Google Scholar 

  42. R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G. Righini, S. Pelli, S. Ribeiro, Y. Messaddeq, Sol–gel Er-doped SiO2–HfO2 planar waveguides: a viable system for 1.5 μm application. Appl. Phys. Lett. 81(1), 28 (2002)

    Article  Google Scholar 

  43. K. Tetzner, K.A. Schroder, K. Bock, Photonic curing of sol–gel derived HfO2 dielectrics for organic field-effect transistors. Ceram. Int. 40(10), 15753 (2014)

    Article  CAS  Google Scholar 

  44. K. Suzuki, K. Kato, Sol–gel synthesis of high-k HfO2 thin films. J. Am. Ceram. Soc. 92, S162 (2009)

    Article  CAS  Google Scholar 

  45. S.J. Ribeiro, Y. Messaddeq, R.R. Goncalves, M. Ferrari, M. Montagna, M.A. Aegerter, Low optical loss planar waveguides prepared in an organic–inorganic hybrid system. Appl. Phy. Lett. 77(22), 3502 (2000)

    Article  CAS  Google Scholar 

  46. C.-F. Liu, X.-G. Tang, L.-Q. Wang, H. Tang, Y.-P. Jiang, Q.-X. Liu, W.-H. Li, Z.-H. Tang, Resistive switching characteristics of HfO2 thin films on mica substrates prepared by sol–gel process. Nanomaterials 9(8), 1124 (2019)

    Article  CAS  Google Scholar 

  47. Z.J. Wang, T. Kumagai, H. Kokawa, J. Tsuaur, M. Ichiki, R. Maeda, Crystalline phases, microstructures and electrical properties of hafnium oxide films deposited by sol–gel method. J. Crystal Growth 281(2–4), 452 (2005)

    Article  CAS  Google Scholar 

  48. D. Depla, Sputter deposition with powder targets: an overview. Vacuum 184, 109892 (2020)

    Article  Google Scholar 

  49. R. Eason, Pulsed laser deposition of thin films: applications-led growth of functional materials (John Wiley & Sons, Hoboken, 2007)

    Google Scholar 

  50. H. Wang, Y. Wang, J. Zhang, C. Ye, H. Wang, J. Feng, B. Wang, Q. Li, Y. Jiang, Interface control and leakage current conduction mechanism in HfO2 film prepared by pulsed laser deposition. Appl. Phys. Lett. 93(20), 202904 (2008)

    Article  Google Scholar 

  51. M.A. Sahiner, J.C. Woicik, P. Gao, P. McKeown, M.C. Croft, M. Gartman, B. Benapfla, Pulsed laser deposition and characterization of Hf-based high-k dielectric thin films. Thin Solid Films 515(16), 6548 (2007)

    Article  CAS  Google Scholar 

  52. M. Kappa, M. Ratzke, J. Reif, Pulsed laser deposition of hafnium oxide on silicon, in solid state phenomena. Trans. Tech. Publ. 108, 723 (2005)

    Google Scholar 

  53. H. Ikeda, S. Goto, K. Honda, M. Sakashita, A. Sakai, S. Zaima, Y. Yasuda, Structural and electrical characteristics of HfO2 films fabricated by pulsed laser deposition. Jpn J Appl. Phy. 41(4S), 2476 (2002)

    Article  CAS  Google Scholar 

  54. H. Wang, Y. Wang, J. Feng, C. Ye, B. Wang, H. Wang, Q. Li, Y. Jiang, A. Huang, Z. Xiao, Structure and electrical properties of HfO2 high-k films prepared by pulsed laser deposition on Si (100). Appl. Phys. A. 93(3), 681 (2008)

    Article  CAS  Google Scholar 

  55. B. Aguirre, R. Vemuri, D. Zubia, M.H. Engelhard, V. Shutthananadan, K.K. Bharathi, C.V. Ramana, Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using a HfO2 ceramic target. Appl. Surf. Sci. 257(6), 2197 (2011)

    Article  CAS  Google Scholar 

  56. M. Nath, A. Roy, Interface and electrical properties of ultra-thin HfO2 film grown by radio frequency sputtering. Physica B 482, 43 (2016)

    Article  CAS  Google Scholar 

  57. M. Toledano-Luque, E. San Andrés, J. Olea, A. Del Prado, I. Mártil, W. Bohne, J. Röhrich, E. Strub, Hafnium oxide thin films deposited by high pressure reactive sputtering in atmosphere formed with different Ar/O2 ratios. Mater. Sci. Semicond. Process. 9(6), 1020 (2006)

    Article  CAS  Google Scholar 

  58. S.M. Haque, K.D. Rao, J. Misal, R. Tokas, D. Shinde, J. Ramana, S. Rai, N. Sahoo, Study of hafnium oxide thin films deposited by RF magnetron sputtering under glancing angle deposition at varying target to substrate distance. Appl. Surf. Sci. 353, 459 (2015)

    Article  Google Scholar 

  59. V. Pervak, F. Krausz, A. Apolonski, Hafnium oxide thin films deposited by reactive middle-frequency dual-magnetron sputtering. Thin Solid Films 515(20–21), 7984 (2007)

    Article  CAS  Google Scholar 

  60. M. Balog, M. Schieber, S. Patai, M. Michman, Thin films of metal oxides on silicon by chemical vapor deposition with organometallic compounds I. J Crystal Growth 17, 298 (1972)

    Article  CAS  Google Scholar 

  61. J. Schaeffer, N. Edwards, R. Liu, D. Roan, B. Hradsky, R. Gregory, J. Kulik, E. Duda, L. Contreras, J. Christiansen, HfO2 gate dielectrics deposited via tetrakis diethylamido hafnium. J. Electrochem. Soc. 150(4), F67 (2003)

    Article  CAS  Google Scholar 

  62. Y. Ohshita, A. Ogura, A. Hoshino, S. Hiiro, H. Machida, HfO2 growth by low-pressure chemical vapor deposition using the Hf (N(C2H5)2) 4/O2 gas system. J. Crystal Growth. 233(1–2), 292 (2001)

    Article  CAS  Google Scholar 

  63. Y. Ohshita, A. Ogura, M. Ishikawa, T. Kada, A. Hoshino, T. Suzuki, H. Machida, K. Soai, HfO2 and Hf1–xSixO2 thin films grown by metal-organic CVD using tetrakis (diethylamido) hafnium. Chem. Vapor Deposition. 12(2–3), 130 (2006)

    Article  CAS  Google Scholar 

  64. J.S. Lehn, S. Javed, D.M. Hoffman, New precursors for the CVD of zirconium and hafnium oxide films. Chem. Vapor Deposition. 12(5), 280 (2006)

    Article  CAS  Google Scholar 

  65. K.-J. Choi, W.-C. Shin, S.-G. Yoon, Effect of annealing conditions on a hafnium oxide reinforced SiO2 gate dielectric deposited by plasma-enhanced metallorganic CVD. J Electrochem. Soc. 149(3), F18 (2002)

    Article  CAS  Google Scholar 

  66. M.-K. Song, S.-W. Kang, S.-W. Rhee, Direct liquid injection metal-organic chemical vapor deposition of HfO2 thin films using Hf (dimethylaminoethoxide) 4. Thin Solid Films 450(2), 272 (2004)

    Article  CAS  Google Scholar 

  67. J. Park, B.K. Park, M. Cho, C.S. Hwang, K. Oh, D.Y. Yang, Chemical vapor deposition of HfO2 thin films using a novel carbon-free precursor: characterization of the interface with the silicon substrate. J Electrochem. Soc. 149(1), G89 (2001)

    Article  Google Scholar 

  68. Y. Ohshita, A. Ogura, A. Hoshino, T. Suzuki, S. Hiiro, H. Machida, Effects of deposition conditions on step-coverage quality in low-pressure chemical vapor deposition of HfO2. J. Crystal Growth. 235(1–4), 365 (2002)

    Article  CAS  Google Scholar 

  69. Y. Ohshita, A. Ogura, A. Hoshino, S. Hiiro, T. Suzuki, H. Machida, Using tetrakis-diethylamido-hafnium for HfO2 thin-film growth in low-pressure chemical vapor deposition. Thin Solid Films 406(1–2), 215 (2002)

    Article  CAS  Google Scholar 

  70. S. Sayan, S. Aravamudhan, B. Busch, W. Schulte, F. Cosandey, G. Wilk, T. Gustafsson, E. Garfunkel, Chemical vapor deposition of HfO2 films on Si (100). J Vacuum Sci Technol A 20(2), 507 (2002)

    Article  CAS  Google Scholar 

  71. T.S. Yang, K.-S. An, E.-J. Lee, W. Cho, H.S. Jang, S.K. Park, Y.K. Lee, T.-M. Chung, C.G. Kim, S. Kim, Chemical vapor deposition of HfO2 thin films using the novel single precursor hafnium 3-methyl-3-pentoxide, Hf (mp) 4. Chem. Mater. 17(26), 6713 (2005)

    Article  CAS  Google Scholar 

  72. A. Baunemann, R. Thomas, R. Becker, M. Winter, R.A. Fischer, P. Ehrhart, R. Waser and A. Devi: Mononuclear precursor for MOCVD of HfO 2 thin films. Chem. Commun. (14), 1610 (2004).

  73. T. Smirnova, L. Yakovkina, V. Kitchai, V. Kaichev, Y.V. Shubin, N. Morozova, K. Zherikova, Chemical vapor deposition and characterization of hafnium oxide films. J. Phys. Chem. Solids. 69(2–3), 685 (2008)

    Article  CAS  Google Scholar 

  74. K. Kukli, M. Ritala, J. Sundqvist, J. Aarik, J. Lu, T. Sajavaara, M. Leskelä, A. Hårsta, Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen. J. Appl. Phys. 92(10), 5698 (2002)

    Article  CAS  Google Scholar 

  75. J. Aarik, J. Sundqvist, A. Aidla, J. Lu, T. Sajavaara, K. Kukli, A. Hårsta, Hafnium tetraiodide and oxygen as precursors for atomic layer deposition of hafnium oxide thin films. Thin Solid Films 418(2), 69 (2002)

    Article  CAS  Google Scholar 

  76. J. Sundqvist, A. Hårsta, J. Aarik, K. Kukli, A. Aidla, Atomic layer deposition of polycrystalline HfO2 films by the HfI4–O2 precursor combination. Thin Solid Films 427(1–2), 147 (2003)

    Article  CAS  Google Scholar 

  77. K. Forsgren, A. Haårsta, J. Aarik, A. Aidla, J. Westlinder, J. Olsson, Deposition of HfO2 thin films in HfI4-based processes. J. Electrochem. Soc. 149(10), F139 (2002)

    Article  CAS  Google Scholar 

  78. N. Takahashi, S. Nonobe, T. Nakamura, Growth of HfO2 films using an alternate reaction of HfCl4 and O2 under atmospheric pressure. J Solid State Chem. 177(11), 3944 (2004)

    Article  CAS  Google Scholar 

  79. J. Aarik, A. Aidla, H. Mändar, V. Sammelselg, T. Uustare, Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition. J. Crystal Growth 220(1–2), 105 (2000)

    Article  CAS  Google Scholar 

  80. E. Gusev, C. Cabral Jr., M. Copel, C. D’emic, M. Gribelyuk, Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications. Microelectron. Eng. 69(2–4), 145 (2003)

    Article  CAS  Google Scholar 

  81. H.B. Park, M. Cho, J. Park, S.W. Lee, C.S. Hwang, J.-P. Kim, J.-H. Lee, N.-I. Lee, H.-K. Kang, J.-C. Lee, Comparison of HfO2 films grown by atomic layer deposition using HfCl4 and H2O or O3 as the oxidant. J. Appl. Phy. 94(5), 3641 (2003)

    Article  CAS  Google Scholar 

  82. K. Tapily, J. Jakes, P.R. Shrestha, D. Gu, H. Baumgart, A. Elmustafa, Comparison of nanomechanical behavior of the amorphous and crystalline phases of ALD HfO2. ECS Transact. 16(4), 269 (2008)

    Article  CAS  Google Scholar 

  83. K. Kukli, M. Ritala, J. Lu, A. Haårsta, M. Leskelä, Properties of HfO2 thin films grown by ALD from hafnium tetrakis (ethylmethylamide) and water. J. Electrochem. Soc. 151(8), F189 (2004)

    Article  CAS  Google Scholar 

  84. Y. Wang, M.-T. Ho, L. Goncharova, L. Wielunski, S. Rivillon-Amy, Y. Chabal, T. Gustafsson, N. Moumen, M. Boleslawski, Characterization of ultra-thin hafnium oxide films grown on silicon by atomic layer deposition using tetrakis (ethylmethyl-amino) hafnium and water precursors. Chem. Mater. 19(13), 3127 (2007)

    Article  CAS  Google Scholar 

  85. S. Li, Y. Zhang, D. Yang, W. Yang, X. Chen, H. Zhao, J. Hou, P. Yang, Structure and optical properties of HfO2 films on Si (100) substrates prepared by ALD at different temperatures. Physica B 584, 412065 (2020)

    Article  CAS  Google Scholar 

  86. K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskelä, Atomic layer deposition of hafnium dioxide films from hafnium tetrakis (ethylmethylamide) and water. Chem. Vapor Deposition. 8(5), 199 (2002)

    Article  CAS  Google Scholar 

  87. A. Deshpande, R. Inman, G. Jursich, C. Takoudis, Atomic layer deposition and characterization of hafnium oxide grown on silicon from tetrakis (diethylamino) hafnium and water vapor. J. Vacuum Sci. Technol. A 22(5), 2035 (2004)

    Article  CAS  Google Scholar 

  88. K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, A.C. Jones, J.L. Roberts, Atomic layer deposition of hafnium dioxide films using hafnium bis (2-butanolate) bis (1-methoxy-2-methyl-2-propanolate) and Water. Chem. Vapor Deposition. 9(6), 315 (2003)

    Article  CAS  Google Scholar 

  89. J. Niinistö, M. Mäntymäki, K. Kukli, L. Costelle, E. Puukilainen, M. Ritala, M. Leskelä, Growth and phase stabilization of HfO2 thin films by ALD using novel precursors. J Crystal Growth. 312(2), 245 (2010)

    Article  Google Scholar 

  90. J. Niinistö, M. Putkonen, L. Niinistö, S.L. Stoll, K. Kukli, T. Sajavaara, M. Ritala, M. Leskelä, Controlled growth of HfO2 thin films by atomic layer deposition from cyclopentadienyl-type precursor and water. J. Mater. Chem. 15(23), 2271 (2005)

    Article  Google Scholar 

  91. J. Niinistö, M. Putkonen, L. Niinistö, K. Arstila, T. Sajavaara, J. Lu, K. Kukli, M. Ritala, M. Leskelä, HfO2 films grown by ALD using cyclopentadienyl-type precursors and H2O or O3 as oxygen source. J. Electrochem. Soc. 153(3), F39 (2006)

    Article  Google Scholar 

  92. C.L. Dezelah IV., J. Niinistö, K. Kukli, F. Munnik, J. Lu, M. Ritala, M. Leskelä, L. Niinistö, The atomic layer deposition of HfO2 and ZrO2 using advanced metallocene precursors and H2O as the oxygen source. Chem. Vapor Deposition. 14(11–12), 358 (2008)

    Article  CAS  Google Scholar 

  93. J. Niinistö, M. Putkonen, L. Niinistö, F. Song, P. Williams, P.N. Heys, R. Odedra, Atomic layer deposition of HfO2 thin films exploiting novel cyclopentadienyl precursors at high temperatures. Chem. Mater. 19(13), 3319 (2007)

    Article  Google Scholar 

  94. M.K. Lee, T.K. Nath, C.-B. Eom, M.C. Smoak, F. Tsui, Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 77(22), 3547 (2000)

    Article  CAS  Google Scholar 

  95. G. Yuan, J.-M. Liu, Y. Wang, D. Wu, S. Zhang, Q. Shao, Z. Liu, Temperature-dependent fatigue behaviors of ferroelectric ABO 3-type and layered perovskite oxide thin films. Appl. Phys. Lett. 84(17), 3352 (2004)

    Article  CAS  Google Scholar 

  96. Y. Bai, T. Siponkoski, J. Peräntie, H. Jantunen, J. Juuti, Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide. Appl. Phys. Lett. 110(6), 063903 (2017)

    Article  Google Scholar 

  97. S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22(11), 2412 (2012)

    Article  CAS  Google Scholar 

  98. Y. Yao, D. Zhou, S. Li, J. Wang, N. Sun, F. Liu, X. Zhao, Experimental evidence of ferroelectricity in calcium doped hafnium oxide thin films. J. Appl. Phys. 126(15), 154103 (2019)

    Article  Google Scholar 

  99. T. Shiraishi, S. Choi, T. Kiguchi, T. Shimizu, H. Funakubo, T. Konno, Formation of the orthorhombic phase in CeO2-HfO2 solid solution epitaxial thin films and their ferroelectric properties. Appl. Phys. Lett. 114(23), 232902 (2019)

    Article  Google Scholar 

  100. T. Shiraishi, S. Choi, T. Kiguchi, T. Shimizu, H. Uchida, H. Funakubo, T.J. Konno, Fabrication of ferroelectric Fe doped HfO2 epitaxial thin films by ion-beam sputtering method and their characterization. Jpn. J. Appl. Phys. 57(11S), 11UF02 (2018)

    Article  Google Scholar 

  101. S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, T. Mikolajick, Ferroelectricity in Gd-doped HfO2 thin films. ECS J. Solid State Sci. Technol. 1(6), N123 (2012)

    Article  CAS  Google Scholar 

  102. T. Yajima, T. Nishimura, S. Migita, T. Tanaka, K. Uchida, A. Toriumi, Regulating phase transformation kinetics via redox reaction in ferroelectric Ge-doped HfO2. Appl. Phys. Lett. 117(18), 182902 (2020)

    Article  CAS  Google Scholar 

  103. T. Perevalov, A. Gutakovskii, V. Kruchinin, V. Gritsenko, I. Prosvirin, Atomic and electronic structure of ferroelectric La-doped HfO2 films. Mater. Res. Express. 6(3), 036403 (2018)

    Article  Google Scholar 

  104. A. Chernikova, D. Kuzmichev, D. Negrov, M. Kozodaev, S. Polyakov, A. Markeev, Ferroelectric properties of full plasma-enhanced ALD TiN/La: HfO2/TiN stacks. Appl. Phys. Lett. 108(24), 242905 (2016)

    Article  Google Scholar 

  105. T. Tromm, J. Zhang, J. Schubert, M. Luysberg, W. Zander, Q. Han, P. Meuffels, D. Meertens, S. Glass, P. Bernardy, Ferroelectricity in Lu doped HfO2 layers. Appl. Phys. Lett. 111(14), 142904 (2017)

    Article  Google Scholar 

  106. P.D. Lomenzo, Q. Takmeel, S. Moghaddam, T. Nishida, Annealing behavior of ferroelectric Si-doped HfO2 thin films. Thin Solid Films. 615, 139 (2016)

    Article  CAS  Google Scholar 

  107. S. Li, D. Zhou, Z. Shi, M. Hoffmann, T. Mikolajick, U. Schroeder, Involvement of unsaturated switching in the endurance cycling of Si-doped HfO2 ferroelectric thin films. Adv. Electron. Mater. 6(8), 2000264 (2020)

    Article  CAS  Google Scholar 

  108. L. Tang, C. Chen, A. Wei, K. Li, D. Zhang, K. Zhou, Regulating crystal structure and ferroelectricity in Sr doped HfO2 thin films fabricated by metallo-organic decomposition. Ceram. Int. 45(3), 3140 (2019)

    Article  CAS  Google Scholar 

  109. T. Schenk, S. Mueller, U. Schroeder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S. Van Elshocht, T. Mikolajick: Strontium doped hafnium oxide thin films: wide process window for ferroelectric memories, in 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC), (IEEE, City, 2013), pp. 260

  110. J. Müller, U. Schröder, T. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110(11), 114113 (2011)

    Article  Google Scholar 

  111. T. Olsen, U. Schröder, S. Müller, A. Krause, D. Martin, A. Singh, J. Müller, M. Geidel, T. Mikolajick, Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Appl. Phys. Lett. 101(8), 082905 (2012)

    Article  Google Scholar 

  112. J. Muller, T.S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12(8), 4318 (2012)

    Article  Google Scholar 

  113. H. Yang, H.-J. Lee, J. Jo, C.H. Kim, J.H. Lee, Role of Si doping in reducing coercive fields for ferroelectric switching in HfO2. Phys. Rev. Appl. 14(6), 064012 (2020)

    Article  CAS  Google Scholar 

  114. S. Estandia, N. Dix, J. Gazquez, I. Fina, J. Lyu, M.F. Chisholm, J. Fontcuberta, F. Sanchez, Engineering ferroelectric Hf0. 5Zr0. 5O2 thin films by epitaxial stress. ACS Appl. Electron. Mater. 1(8), 1449 (2019)

    Article  CAS  Google Scholar 

  115. P. Nukala, Y. Wei, V. de Haas, Q. Guo, J. Antoja-Lleonart, B. Noheda, Guidelines for the stabilization of a polar rhombohedral phase in epitaxial Hf0. 5Zr0. 5O2 thin films. Ferroelectrics 569(1), 148 (2020)

    Article  CAS  Google Scholar 

  116. T. Mimura, T. Shimizu, H. Funakubo, Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness. Appl. Phy. Lett. 115(3), 032901 (2019)

    Article  Google Scholar 

  117. J. Dai, P. Lee, K. Wong, H.L. Chan, C. Choy, Epitaxial growth of yttrium-stabilized HfO2 high-k gate dielectric thin films on Si. J Appl. Phys. 94(2), 912 (2003)

    Article  CAS  Google Scholar 

  118. C. Kim, K. Jeong, Y. Kang, S. Cho, M.-H. Cho, K. Chung, D.-H. Ko, Y. Yi, H. Kim, Defect states in epitaxial HfO2 films induced by atomic transport from n-GaAs (100) substrate. J. Appl. Phys. 109(11), 114112 (2011)

    Article  Google Scholar 

  119. T. Shimizu, K. Katayama, T. Kiguchi, A. Akama, T.J. Konno, O. Sakata, H. Funakubo, The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film. Sci. Rep. 6(1), 1 (2016)

    Article  Google Scholar 

  120. T. Mimura, K. Katayama, T. Shimizu, H. Uchida, T. Kiguchi, A. Akama, T.J. Konno, O. Sakata, H. Funakubo, Formation of (111) orientation-controlled ferroelectric orthorhombic HfO2 thin films from solid phase via annealing. Appl. Phys. Lett. 109(5), 052903 (2016)

    Article  Google Scholar 

  121. T. Kiguchi, S. Nakamura, A. Akama, T. Shiraishi, T.J. Konno, Solid state epitaxy of (Hf, Zr) O2 thin films with orthorhombic phase. J. Ceram. Soc. Jpn. 124(6), 689 (2016)

    Article  CAS  Google Scholar 

  122. T. Shimizu, K. Katayama, H. Funakubo, Epitaxial growth of YO1.5 doped HfO2 films on (100) YSZ substrates with various concentrations. Ferroelectrics 512(1), 105 (2017)

    Article  Google Scholar 

  123. T. Mimura, T. Shimizu, H. Uchida, O. Sakata, H. Funakubo, Thickness-dependent crystal structure and electric properties of epitaxial ferroelectric Y2O3-HfO2 films. Appl. Phys. Lett. 113(10), 102901 (2018)

    Article  Google Scholar 

  124. T. Shimizu, T. Mimura, T. Kiguchi, T. Shiraishi, T. Konno, Y. Katsuya, O. Sakata, H. Funakubo, Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films. Appl. Phys. Lett. 113(21), 212901 (2018)

    Article  Google Scholar 

  125. T. Suzuki, T. Shimizu, T. Mimura, H. Uchida, H. Funakubo, Epitaxial ferroelectric Y-doped HfO2 film grown by the RF magnetron sputtering. Japanese Journal of Applied Physics. 57(11S), 11UF15 (2018)

    Article  Google Scholar 

  126. K. Lee, T.Y. Lee, S.M. Yang, D.H. Lee, J. Park, S.C. Chae, Ferroelectricity in epitaxial Y-doped HfO2 thin film integrated on Si substrate. Appl. Phys. Lett. 112(20), 202901 (2018)

    Article  Google Scholar 

  127. T. Mimura, T. Shimizu, T. Kiguchi, A. Akama, T.J. Konno, Y. Katsuya, O. Sakata, H. Funakubo, Effects of heat treatment and in situ high-temperature X-ray diffraction study on the formation of ferroelectric epitaxial Y-doped HfO2 film. Jpn. J. Appl. Phy. 58(SB), SBBB09 (2019)

    Article  CAS  Google Scholar 

  128. T. Mimura, T. Shimizu, H. Uchida, H. Funakubo, Room-temperature deposition of ferroelectric HfO2-based films by the sputtering method. Appl. Phys. Lett. 116(6), 062901 (2020)

    Article  CAS  Google Scholar 

  129. T. Shimizu, Y. Tashiro, T. Mimura, T. Kiguchi, T. Shiraishi, T.J. Konnno, O. Sakata, H. Funakubo, Electric-field-induced ferroelectricity in 5% Y-doped Hf0. 5Zr0. 5O2: transformation from the paraelectric tetragonal phase to the ferroelectric orthorhombic phase. Physica status solidi (RRL)- Rapid Res. Lett. 15, 2000589 (2021)

    Article  CAS  Google Scholar 

  130. Y. Wei, P. Nukala, M. Salverda, S. Matzen, H.J. Zhao, J. Momand, A.S. Everhardt, G. Agnus, G.R. Blake, P. Lecoeur, A rhombohedral ferroelectric phase in epitaxially strained Hf 0.5 Zr 0.5 O2 thin films. Nat. Mater. 17(12), 1095 (2018)

    Article  CAS  Google Scholar 

  131. J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, F. Sánchez, Robust ferroelectricity in epitaxial Hf1/2Zr1/2O2 thin films. Appl. Phys. Lett. 113(8), 082902 (2018)

    Article  Google Scholar 

  132. J. Lyu, I. Fina, R. Bachelet, G. Saint-Girons, S. Estandía, J. Gázquez, J. Fontcuberta, F. Sánchez, Enhanced ferroelectricity in epitaxial Hf0. 5Zr0. 5O2 thin films integrated with Si (001) using SrTiO3 templates. Appl. Phys. Lett. 114(22), 222901 (2019)

    Article  Google Scholar 

  133. P. Nukala, J. Antoja-Lleonart, Y. Wei, L. Yedra, B. Dkhil, B. Noheda, Direct epitaxial growth of polar (1–x) HfO2–(x) ZrO2 ultrathin films on silicon. ACS Appl. Electron. Mater. 1(12), 2585 (2019)

    Article  CAS  Google Scholar 

  134. S. Estandía, N. Dix, M.F. Chisholm, I. Fina, F. Sánchez, Domain-matching epitaxy of ferroelectric Hf0. 5Zr0. 5O2 (111) on La2/3Sr1/3MnO3 (001). Crystal Growth Design 20(6), 3801 (2020)

    Article  Google Scholar 

  135. T. Song, R. Bachelet, G. Saint-Girons, R. Solanas, I. Fina, F. Sánchez, Epitaxial ferroelectric La-doped Hf0. 5Zr0. 5O2 thin films. ACS Appl. Electron. Mater. 2(10), 3221 (2020)

    Article  CAS  Google Scholar 

  136. T. Song, R. Bachelet, G. Saint-Girons, N. Dix, I. Fina, F. Sánchez, Thickness effect on ferroelectric properties of La-doped HfO2 epitaxial films down to 4.5 nm. J. Mater. Chem. C. 9, 12224 (2021)

    Article  CAS  Google Scholar 

  137. T. Song, H. Tan, N. Dix, R. Moalla, J. Lyu, G. Saint-Girons, R. Bachelet, F. Sánchez, I. Fina, Stabilization of the ferroelectric phase in epitaxial Hf1–x Zr x O2 enabling coexistence of ferroelectric and enhanced piezoelectric properties. ACS Appl. Electron. Mater. 3(5), 2106 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2020R1F1A1076576), Korea Basic Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2020R1A6C103A050), and the Gachon University research fund of 2019 (GCU-2019-0800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Wung Bark.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.K., Bark, C.W. Crystallographic structure and ferroelectricity of epitaxial hafnium oxide thin films. J. Korean Ceram. Soc. 59, 25–43 (2022). https://doi.org/10.1007/s43207-021-00171-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00171-z

Keywords

Navigation