Skip to main content
Log in

Effects of the particle size composition of sintering additives on pore characteristics, flexural strength, and gas permeability of liquid-phase-bonded macroporous SiC

Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Macroporous SiC with unimodal pore-size distribution was fabricated using a liquid-phase bonding method with Al2O3–Y2O3–SiO2 sintering additives at 1500 °C in Ar at for 1 h. The effects of the sintering additive particle size and content on the flexural strength, apparent porosity, gas permeability, and pore characteristics, such as average pore size and pore structure, were investigated. The pore size and porosity of the TA-SC specimens fabricated using relatively large sintering additive particles increased simultaneously, thus changing their pore structure. The pore structure of SA-SC mainly consisted of stacked cubic solid spheres, while the pore structure of TA-SC consisted of spherical pores with cubic stacking. The TA-SC specimens with higher porosity and larger pores exhibited higher flexural strengths than the SA-SC specimens. This can mainly be attributed to the difference in the pore structures of the SA-SC and TA-SC specimens, which directly affected the solid bonding area. The gas permeability of the SA-SC and TA-SC specimens varied from 2.5 × 10–12 to 4.1 × 10–12 m2 depending on their porosity and pore size. The effect of the apparent porosity was more significant on the gas permeability than that on the average pore size, particularly for the porous SiC with the porosity of 33.5–39.7 vol% and the average pore size of 13.4–18.5 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. S. Schaafhausen, E. Yazhenskikh, S. Heidenreich, M. Müller, Corrosion of silicon carbide hot gas filter candles in gasification environment. J. Eur. Ceram. Soc. 34, 575–588 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.10.011

    Article  CAS  Google Scholar 

  2. T. Ohji, M. Fukushima, Macro-porous ceramics: processing and properties. Int. Mater. Rev. 57, 115–131 (2012). https://doi.org/10.1179/1743280411Y.0000000006

    Article  CAS  Google Scholar 

  3. U.F. Vogt, L. Györfy, A. Herzog, T. Granule, G. Plesch, Macroporous silicon carbide foams for porous burner applications and catalyst supports. J. Phys. Chem. Solids 68, 1234–1238 (2007). https://doi.org/10.1016/j.jpcs.2006.12.008

    Article  CAS  Google Scholar 

  4. J. Adler, Ceramic diesel particulate filters. Int. J. Appl. Ceram. Technol. 2, 429–439 (2005). https://doi.org/10.1111/j.1744-7402.2005.02044.x

    Article  CAS  Google Scholar 

  5. J.F. Zhang, X.N. Zhou, Q. Zhi, S. Zhao, X. Huang, N.L. Zhang, B. Wang, J.F. Yang, K. Ishizaki, Microstructure and mechanical properties of porous SiC ceramics by carbothermal reduction and subsequent recrystallization sintering. J. Asian Ceram. Soc. 8, 255–264 (2020). https://doi.org/10.1080/21870764.2020.1728045

    Article  Google Scholar 

  6. R.Z. Liu, B. Wang, J.K. Cheng, J.F. Yang, J.Q. Gao, A novel method for the preparation of porous SiC. Mater. Sci. Forum 620–622, 773–776 (2009). https://doi.org/10.4028/www.scientific.net/MSF.620-622.773

    Article  Google Scholar 

  7. Y.S. Kim, K.S. Min, J. Shim, D.J. Kim, Formation of porous SiC ceramics via recrystallization. J. Eur. Ceram. Soc. 32, 3611–3615 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.04.044

    Article  CAS  Google Scholar 

  8. B.K. Jang, Y. Sakka, Influence of microstructure on the thermophysical properties of sintered SiC Ceramics. J. Alloy. Compd. 463, 493–497 (2008). https://doi.org/10.1016/j.jallcom.2007.09.055

    Article  CAS  Google Scholar 

  9. S. Roy, K.G. Schell, E.C. Bucharsky, P. Hettich, S. Dietrish, K.A. Weidenmann, A. Wanner, M.J. Hoffmann, Processing and elastic property characterization of porous sic preform for interpenetrating metal/ceramic composites. J. Am. Ceram. Soc. 95, 3078–3083 (2012). https://doi.org/10.1111/j.1551-2916.2012.05347.x

    Article  CAS  Google Scholar 

  10. W.G. Chi, D.L. Jiang, Z.R. Huang, Sintering behavior of porous SiC ceramics, S.H. Tan, Ceram. Int., 30 (2004), pp. 869–874. https://doi.org/10.1016/j.ceramint.2003.10.006

  11. M. Fukushima, M. Nakata, Y. Zhou, T. Ohji, Y. Yoshizawa, Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method. J. Eur. Ceram. Soc. 30, 2889–2896 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.03.018

    Article  CAS  Google Scholar 

  12. J.H. She, Z.Y. Deng, J. Daniel-doni, T. Ohji, Oxidation bonding of porous silicon carbide ceramics. J. Mater. Sci. 37, 3615–3622 (2002). https://doi.org/10.1023/A:1016596805717

    Article  CAS  Google Scholar 

  13. Y.H. Choi, Y.W. Kim, I.S. Han, S.K. Woo, Effect of alkaline earth metal oxide addition on flexural strength of porous mullite-bonded silicon carbide ceramics. J. Mater. Sci. 45, 6841–6844 (2010). https://doi.org/10.1007/s10853-010-4939-9

    Article  CAS  Google Scholar 

  14. A. Preston, G. Mueller, Bonding SiC to SiC using a sodium silicate solution. Int. J. Appl. Ceram. Technol. 9, 764–771 (2012). https://doi.org/10.1111/j.1744-7402.2011.02644.x

    Article  CAS  Google Scholar 

  15. S.M. Zhu, S.Q. Ding, H.A. Xi, Q. Li, R.D. Wang, Preparation and characterization of SiC/cordierite composite porous ceramics. Ceram. Int. 33, 115–118 (2007). https://doi.org/10.1016/j.ceramint.2005.07.006

    Article  CAS  Google Scholar 

  16. C.Y. Bai, X.Y. Deng, J.B. Li, Y.N. Jing, W.K. Jiang, Z.M. Liu, Y. Li, Fabrication and properties of cordierite-mullite bonded porous SiC ceramics. Ceram. Int. 40, 6225–6231 (2014). https://doi.org/10.1016/j.ceramint.2013.11.078

    Article  CAS  Google Scholar 

  17. S. Liu, Y.P. Zeng, D. Jiang, Fabrication and characterization of cordierite-bonded porous SiC ceramics. Ceram. Int. 35, 597–602 (2009)

    Article  CAS  Google Scholar 

  18. J.H. Eom, Y.W. Kim, S.K. Woo, I.S. Han, Effect of submicron silicon carbide powder addition on the processing and strength of reaction Sintered mullite-silicon carbide composites. J. Ceram. Soc. Jpn. 117, 421–425 (2009). https://doi.org/10.2109/jcersj2.117.421

    Article  CAS  Google Scholar 

  19. Y. Jing, X.Y. Deng, J.B. Li, C.Y. Bai, W.K. Jiang, Fabrication and properties of SiC/mullite composite porous ceramics. Ceram. Int. 40, 1329–1334 (2014). https://doi.org/10.1016/j.ceramint.2013.07.013

    Article  CAS  Google Scholar 

  20. C.Y. Bai, X.Y. Deng, J.B. Li, Y.N. Jing, W.K. Jiang, Preparation and properties of mullite-bonded porous SiC ceramics using porous alumina as oxide. Mater. Charact. 90, 81–87 (2014). https://doi.org/10.1016/j.matchar.2014.01.016

    Article  CAS  Google Scholar 

  21. S.Q. Ding, S.M. Zhu, Y.P. Zeng, D.L. Jiang, Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding. J. Eur. Ceram. Soc. 27, 2095–2102 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.06.003

    Article  CAS  Google Scholar 

  22. Xin Yang, Z.A. Su, Q.Z. Huang, L.Y. Chai, Preparation and oxidation resistance of mullite/SiC coating for carbon materials at 1150 °C, Transactions of Nonferrous Metals Society of China, 22 (2012) 2997–3002. https://doi.org/10.1016/S1003-6326(11)61562-8

  23. A. Dey, N. Kayal, O. Chakrabarti, N.M. Fortes, M.D.M. Innocentini, A.R. Molla, P. Sinha, S. Dalui, Studies on processing of layered oxide-bonded porous sic ceramic filter materials. Int. J. Appl. Ceram. Technol. 18, 869–879 (2021). https://doi.org/10.1111/ijac.13717

    Article  CAS  Google Scholar 

  24. V.G. Resmi, K.M. Sree Manu, V. Lakshmi, M. Brahmakumar, T.P.D. Rajan, C. Pavithran, B.C. Pai, Processing of silica bonded porous SiC preform for metallic composites. J. Porous Mater. 22, 1445–1454 (2015). https://doi.org/10.1007/s10934-015-0025-7

    Article  CAS  Google Scholar 

  25. H.Y. Sheng, Y.W. Kim, I.H. Song, Processing of silicon-derived silica-bonded silicon carbide membrane supports. Ceram. Int. 45, 2161–2169 (2019). https://doi.org/10.1016/j.ceramint.2018.10.126

    Article  CAS  Google Scholar 

  26. S.Q. Ding, S.M. Zhu, Y.P. Zeng, D.L. Jiang, Effect of Y2O3 addition on the properties of reaction-bonded porous SiC ceramics. Ceram. Int. 32, 461–466 (2006). https://doi.org/10.1016/j.ceramint.2005.03.024

    Article  CAS  Google Scholar 

  27. S.H. Chae, Y.W. Kim, I.H. Song, H.D. Kim, J.S. Bae, S.M. Na, S.I. Kim, Low temperature processing and properties of porous frit-bonded SiC ceramics. Korean Ceram. Soc. 46, 488–492 (2009). https://doi.org/10.4191/kcers.2009.46.5.488

    Article  CAS  Google Scholar 

  28. S.C. Kim, Y.W. Kim, I.H. Song, Processing and properties of glass-bonded silicon carbide membrane supports. J. Eur. Ceram. Soc. 37, 1225–1232 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.11.019

    Article  CAS  Google Scholar 

  29. J. Tian, K. Shobu, Fabrication of silicon carbide-mullite composite by melt infiltration. J. Am. Ceram. Soc. 86, 39–42 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03274.x

    Article  CAS  Google Scholar 

  30. M.L. Auger, A. Sengupta, V.K. Sarin, Coal slag protection of silicon carbide with chemically vapor deposited mullite coatings. J. Am. Ceram. Soc. 83, 2429–2435 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01572.x

    Article  CAS  Google Scholar 

  31. E. Gomez, J. Echeberria, I. Iturriza, F. Castro, Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2. J. Eur. Ceram. Soc. 24, 2895–2903 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.09.002

    Article  CAS  Google Scholar 

  32. B. Yuan, G. Wang, H.X. Li, L.F. Liu, Y.S. Liu, Z.Z. Shen, Fabrication and microstructure of porous SiC ceramics with Al2O3 and CeO2 as sintering additives. Ceram. Int. 42, 12613–12616 (2016). https://doi.org/10.1016/j.ceramint.2016.04.147

    Article  CAS  Google Scholar 

  33. M. Hotta, H. Kita, H. Matsuura, N. Enomoto, J. Hojo, Pore-size control in porous SiC ceramics prepared by spark plasma sintering. J. Ceram. Soc. Jpn. 120, 243–247 (2012). https://doi.org/10.2109/jcersj2.120.243

    Article  CAS  Google Scholar 

  34. J.H. Eom, Y.W. Kim, Effect of additive composition on microstructure and strength of porous silicon carbide ceramics. J. Mater. Sci. 44, 4482–4486 (2009). https://doi.org/10.1007/s10853-009-3638-x

    Article  CAS  Google Scholar 

  35. S.I. Yun, M.R. Youm, S. Nahm, S.W. Park, Fabrication and properties of macro-porous SiC using Al2O3–Y2O3–SiO2 as bonding additives. Ceram. Int. 47, 11979–11988 (2021)

    Article  CAS  Google Scholar 

  36. P. Zhou, X.B. Yu, L.Z. Yang, S.P. Yang, W.J. Gao, Synthesis of Y2Si2O7: Eu nanocrystal and its optical properties. J. Lumin. 124, 241–244 (2007). https://doi.org/10.1016/j.jlumin.2006.03.002

    Article  CAS  Google Scholar 

  37. Z. Sun, Y.C. Zhou, M.S. Li, Low-temperature synthesis and sintering of γ-Y2Si2O7. J. Mater. Res. 21, 1443–1450 (2006). https://doi.org/10.1557/jmr.2006.0173

    Article  CAS  Google Scholar 

  38. A. Can, M. Herrmann, D.S. McLachlan, I. Sigalas, J. Adler, Densification of liquid phase sintered silicon carbide. J. Eur. Ceram. Soc. 26, 1707–1713 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.253

    Article  CAS  Google Scholar 

  39. F. Hue, Y. Jorand, J. Dubois, G. Fantozzi, Analysis of the weight loss during sintering of silicon-carbide whisker-reinforced alumina composites. J. Eur. Ceram. Soc. 17, 557–563 (1997). https://doi.org/10.1016/S0955-2219(96)00094-5

    Article  CAS  Google Scholar 

  40. B. Wang, H. Zhang, H.T. Phuong, F. Jin, J.F. Yang, K. Ishizaki, Gas permeability and adsorbability of the glass-bonded porous silicon carbide ceramics with controlled pore size. Ceram. Int. 41, 2279–2285 (2015). https://doi.org/10.1016/j.ceramint.2014.10.032

    Article  CAS  Google Scholar 

  41. S.C. Kim, H.J. Yeom, Y.W. Kim, I.H. Song, J.H. Ha, Processing of alumina-coated glass-bonded silicon carbide membranes for oily wastewater treatment. Int. J. Appl. Ceram. Technol. 14, 692–702 (2017). https://doi.org/10.1111/ijac.12693

    Article  CAS  Google Scholar 

  42. I.H. Song, J.H. Ha, M.J. Park, H.D. Kim, Y.W. Kim, Effects of silicon particle size on microstructure and permeability of silicon-bonded SiC ceramics. J. Ceram. Soc. Jpn. 120, 370–374 (2012). https://doi.org/10.2109/jcersj2.120.370

    Article  CAS  Google Scholar 

  43. N. Kayal, A. Dey, O. Chakrabarti, Incorporation of mullite as a bond phase into porous SiC by an infiltration technique. Mater. Sci. Eng. A 535, 222–227 (2012). https://doi.org/10.1016/j.msea.2011.12.070

    Article  CAS  Google Scholar 

  44. R.W. Rice, Evaluation and extension of physical property-porosity models based on minimum solid area. J. Mater. Sci. 31, 102–118 (1996). https://doi.org/10.1007/BF00355133

    Article  CAS  Google Scholar 

  45. S. Ding, Y.P. Zeng, D.L. Jiang, Gas permeability behavior of mullite-bonded porous silicon carbide ceramics. J. Mater. Sci. 42, 7171–7175 (2007). https://doi.org/10.1007/s10853-007-1577-y

    Article  CAS  Google Scholar 

  46. J.H. Eom, Y.W. Kim, I.H. Song, Effects of the initial α-SiC content on the microstructure, mechanical properties, and permeability of macroporous silicon carbide ceramics. J. Eur. Ceram. Soc. 32, 1283–1290 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Fundamental R&D Program of the Ministry of Trade, Industry, and Energy, Republic of Korea and Korea Institute of Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sahn Nahm or Sang Whan Park.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S.I., Nahm, S. & Park, S.W. Effects of the particle size composition of sintering additives on pore characteristics, flexural strength, and gas permeability of liquid-phase-bonded macroporous SiC. J. Korean Ceram. Soc. 58, 737–746 (2021). https://doi.org/10.1007/s43207-021-00148-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00148-y

Keywords

Navigation