Skip to main content
Log in

Influence of the chain length of the fatty acids present in different oils and the pore diameter of the support on the catalytic activity of immobilized lipase for ethyl ester production

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this work, the effect of fatty acid chain length of different oils and the pore diameter of the biocatalyst were evaluated in the production of ethyl esters. Mesoporous organized silica MCM-41 and SBA-15 with pore diameters of 2.5 nm and 6.7 nm, respectively, were used for the lipase immobilization. The structural and textural characteristics of the supports and biocatalysts were verified by X-ray diffraction and nitrogen physisorption analyses. Pore size was the parameter with the most influence on the lipase loading and SBA-15 adsorbed more lipase. The combination of the chain length of the fatty acids presents in oils and the pore diameter of the biocatalyst influenced the lipase catalyst performance relative to the ethyl ester yield, indicating a preference for the medium-chain length fatty acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AOCS (1997) Official method Ca 5a–40: free fatty acids. Official methods and recommended practices of the AOCS. American Oil Chemists’ Society Press, Champaign

    Google Scholar 

  • Balakos MW, Hernandez EE (1997) Catalyst characteristics and performance in edible oil hydrogenation. Catal Today 35:415–425

    Article  CAS  Google Scholar 

  • Barret EP, Joyner LG, Halenda P (1951) The determination of pore volume and area distribution in porous substances I. Computation from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  Google Scholar 

  • Bohr SSR, Lund PM, Kallenbach AS, Pinholt H, Thomsen J, Iversen L, Svendsen A, Christensen SM, Hatzakis NS (2019) Direct observation of Thermomyces lanuginosus lipase diffusional states by single particle tracking and their remodeling by mutations and inhibition. Sci Rep 9:16169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bond AD (2004) On the crystal structure and melting pointing alternation of the n-alkyl carboxylic acids. New J Chem 28:104–114

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layer. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Calzada LA, Castellanos R, Garciá LA, Klimmova TE (2019) TiO2, SnO2 and ZnO catalysts supported on mesoporous SBA-15 versus unsupported nanopowders in photocatalytic degradation of methylene blue. Microporous Mesoporous Mater 285:247–258

    Article  CAS  Google Scholar 

  • Carnakci M, Gerpen V (1999) Biodiesel production via acid catalysis. Trans ASAE 42:1203–1210

    Article  Google Scholar 

  • Cazaban D, Wilson L, Betancor L (2017) Lipase immobilization on siliceous supports: application to the synthetic reactions. Curr Org Chem 21:96–103

    Article  CAS  Google Scholar 

  • Dacquin JP, Lee AF, Wilson K (2012) Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis. Chem Comm 48:212–214

    Article  CAS  PubMed  Google Scholar 

  • de Paula LNR, de Paula GM, Rodrigues MGF (2020) Adsorption of reactive blue BF-5G dye on MCM-41 synthesized from Chocolate clay. Cerâmica 66:269–276

    Article  CAS  Google Scholar 

  • Dhake KP, Karoyo AH, Mohamed MH, Wilson LD, Bhalchandra M (2013) Enzymatic activity studies of Pseudomonas cepacia lipase adsorbed onto copolymer supports containing β—cyclodextrin. J Mol Catal B Enzym 87:105–112

    Article  CAS  Google Scholar 

  • Dias MRG, Pauloveloso A, do Amaral LFM, Betim RT, Nascimento MG, Pilissão C (2018) Immobilization of Burkholderia cepacia on pristine or functionalized multi-walled carbon nanotubes and application on enzyme resolution of (RS)—1—Phenylethanol. J Braz Chem Soc 29:1876–1884

    CAS  Google Scholar 

  • Domingos AK, Saad EB, Wihelm HM, Ramos LP (2008) Optimization of the ethanolysis of Raphanus sativus (L. Var.) crude oil applying the response surface methodology. Bioresour Technol 99:1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62:197–212

    Article  CAS  Google Scholar 

  • Filho DG, Silva AG, Guidini CZ (2019) Lipases: sources, immobilization methods, and industrial applications. Appl Microbiol Biotechnol 103:7399–7423

    Article  PubMed  CAS  Google Scholar 

  • Filliéres R, Benjelloun-Mlayah B, Delmas M (1995) Ethanolisys of rapeseed oils: quantitation of ethyl esters, mono, di-, and triglycerides and glycerol by high-performance size-exclusion chromatography. J Am Oil Chem Soc 72:427–432

    Article  Google Scholar 

  • Fjerbaek L, Christensen V, Norddhal B (2009) A review on current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Wang Y, Diao X, Luo G, Dai Y (2010) Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida Antarctica lipase in SBA-15. Bioresour Technol 101:3830–3837

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves KM, Itabaiana I, Papadimitriou V, Zoumpanioti M, Leal CRL, de Souza ROMA, Cordeiro Y, Xenakis A (2016) Nanoencapsulated lecitase ultra and Thermomyces lanuginosus liapase, a comparative structural study. Langmuir 32:6746–6756

    Article  PubMed  CAS  Google Scholar 

  • Grün M, Unger KK, Matsumoto A, Tsutsumi K (1999) Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater 27:207–216

    Article  Google Scholar 

  • Gustafson H, Johanson EM, Barrabino A, Óden M, Holmberg K (2012) Immobilization of lipase from Mucor mihei and Rizhopus orizae into mesoporous silica—the effect of varied particle size and morphology. Colloid Surf B Biointerfaces 110:22–30

    Article  CAS  Google Scholar 

  • Hartman M, Jung D (2010) Biocatalysis with enzyme immobilized in mesoporous hosts: the status quo and future trends. J Mater Chem 20:844–857

    Article  CAS  Google Scholar 

  • Hartman M, Kostrov X (2013) Immobilization of enzymes on mesoporous silica—benefits and challenges. Chem Soc Rev 42:6277–6289

    Article  CAS  PubMed  Google Scholar 

  • Hartman M, Lago RCA (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 17:475–476

    Google Scholar 

  • Hudson S, Cooney J, Magner E (2008) Protein in mesoporous silicates. Angew Chem Int Ed 47:8582–8594

    Article  CAS  Google Scholar 

  • Jaladi H, Katiyar A, Thiel SW, Guliatns VV, Pinto NG (2009) Effect of pore diffusional resistance on biocatalytic activity of Burkholderia cepacia lipase immobilized on SBA-15 hosts. Chem Eng Sci 64:1474–1479

    Article  CAS  Google Scholar 

  • Jiang JJ, Tan CS (2012) Biodiesel production from coconut oil in supercritical methanol in the presence of a cosolvent. J Taiwan Inst Chem E 43:102–107

    Article  CAS  Google Scholar 

  • Kang Y, He J, Guo X, Guo X, Song Z (2007) Influence of the pore diameters of the immobilization of lipase in SBA-15. Ind Eng Chem Res 46:4474–4479

    Article  CAS  Google Scholar 

  • Kobayashi FKM, Kitagawa Y, Matsuura Y, Sato K, Suzuki M (1991) Structure of the γ1 phase of erucic acid. Acta Cryst 48:1060–1063

    Google Scholar 

  • Kubiak-Ossowaska K, Tokarczyk K, Jachimska B, Mulheran PA (2017) Bovine serum albumin adsorption in silica surface explored by simulation and experiment. J Phy Chem B 121:2986–3975

    Google Scholar 

  • Li Y, Gao F, Wei W, Qu JB, Ma GH, Zhou WQM (2010) Pore size of macroporous polystyrene microspheres affects lipase immobilization. J Mol Catal B Enzym 66:182–189

    Article  CAS  Google Scholar 

  • Lu S, Song Z, He J (2011) Diffusion-controlled protein adsorption in mesoporous silica. J Phys Chem B 115:7744–7750

    Article  CAS  PubMed  Google Scholar 

  • Marler B, Oberhagemann U, Votman S, Gies H (1996) Influence of the sorbate type on XRD peak intensities of loaded MCM-41. Microporous Mater 6:375–383

    Article  CAS  Google Scholar 

  • Nguyen HH, Kim M (2017) An overview in enzyme techniques in enzyme immobilization. Appl Sci Converg Technol 26:157–163

    Article  Google Scholar 

  • Norjannah B, Ong HC, Masjuki HH, Juan JC, Chong WT (2016) Enzymatic transesterification for biodiesel production: a comprehensive review. RCS Adv 6:60034–66055

    CAS  Google Scholar 

  • Pereira EB, Zanin GM, Castro HF (2003) Immobilization and catalytic properties of lipase on chitosan for hydrolysis and esterification reactions. Braz J Chem Eng 20:343–355

    Article  CAS  Google Scholar 

  • Pleiss J, Fisher M, Schmid RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids 93:67–80

    Article  CAS  PubMed  Google Scholar 

  • Rebelo LP, Netto CGC, Toma HE, Andrade LH (2010) Enzymatic kinetic resolution of (RS)—1—(Phenyl)ethanols by Burkholderia cepacia lipase immobilized on magnetic nanoparticles. J Braz Chem Soc 21:1537–1542

    Article  CAS  Google Scholar 

  • Rimola A, Costa D, Sodupe M, Lambert JF, Ugliengo P (2013) Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 113:4216–4313

    Article  CAS  PubMed  Google Scholar 

  • Sandoval G, Casas-Godoy L, Bonet-Rangel K, Rodrigues J, Ferreira-Dias S, Valero F (2017) Enzyme-catalyzed production of biodiesel as an alternative to chemical-catalyzed process: advantages and constraints. Curr Biochem Eng 4:109–141

    Article  CAS  Google Scholar 

  • Sankaran R, Show PL, Chang JS (2016) Biodiesel production using immobilized lipase: feasibility and challenges. Biofuels Bioprod Biorefining 10:896–916

    Article  CAS  Google Scholar 

  • Santambrogio C, Sasso F, Natalello A, Brocca S, Grandori R, Doglia SM (2013) Effects of methanol-tolerant bacterial lipase. Appl Microbiol Biot 97:8609

    Article  CAS  Google Scholar 

  • Schmitt J, Brocca S, Schmid RD, Pleiss J (2002) Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity. Protein Eng 15:595–601

    Article  CAS  PubMed  Google Scholar 

  • Serra E, Mayoral A, Sakamoto Y, Blanco RM, Díaz I (2008) Immobilization of lipases in ordered mesoporous materials: effect of textural and structural parameters. Microporous Mesoporous Mater 114:201–213

    Article  CAS  Google Scholar 

  • Sharma BK, Biresaw G (2016) Environmentally friendly and biobased lubricants. CRC Press, New York

    Book  Google Scholar 

  • Sharma S, Kanvar SS (2014) Organic solvent tolerant lipase and applications. Sci World J 61:1–15

    Google Scholar 

  • Thangaraj B, Solomon PR (2019) Immobilization of lipases—a review. Part i: enzyme immobilization. ChemBioEng Rev 6:157–166

    Article  CAS  Google Scholar 

  • Thangaraj B, Solomon PR, Muniyandi B, Ranganathan S, Lin L (2019) Catalysis in biodiesel production—a review. Clean Energy 3:2–23

    Article  Google Scholar 

  • Thommes M, Khon R, Froba M (2002) Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-14 silica and controlled-pore glass at temperatures above and below the bulk triple point. Appl Surf Sci 196:239–249

    Article  CAS  Google Scholar 

  • Vaysse L, Ly A, Moulin G, Dubreucq E (2002) Chain-length selectivity of various lipase during hydrolysis, esterification and alcoholysis in lipase aqueous medium. Enzyme Microb Technol 31:648–655

    Article  CAS  Google Scholar 

  • Vinu A, Murugesan V, Tagermann O, Hartman M (2004) Adsorption of cytochrome c on mesoporous molecular sieves: influence of pH, pore diameter, and aluminum incorporation. Chem Mater 16:3056–3065

    Article  CAS  Google Scholar 

  • Vlasova NN, Golovkova LP (2004) The adsorption of amino acids on the surface of highly dispersed silica. Colloid J 66:657–662

    Article  CAS  Google Scholar 

  • Wilks RS (2008) Low linoleic soybeans and beyond. Lipid Technol 20:277–279

    Article  CAS  Google Scholar 

  • Yang J, Koga Y, Nakano H, Yamane T (2002) Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vivo combinatorial mutagenesis in the substrate-binding site. Protein Eng 15:147–152

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zou Y, Shen Y, Gao X, Zheng X, Zhang X, Chen Y, Guo J (2014) Dominated effects analysis of the channel size of silica support materials on the catalytic performance of immobilized lipase catalysts in the transformation of unrefined waste cooking oil to biodiesel. Bioenerg Res 7:1541–1549

    Article  CAS  Google Scholar 

  • Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structure. J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  • Zhong L, Feng Y, Wang G, Wang Z, Bilal M, Lv H, Jia S, Cui J (2020) Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. Int J Biol Macromol 152:207–222

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Hartmann M (2013) Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev 42:3894–3912

    Article  CAS  PubMed  Google Scholar 

  • Zorn K, Oroz-Guinea I, Brundiek H, Dӧrr M, Bornscheuer UT (2018) Alteration of chain length selectivity of Candida Antarctica lipase a by semi-rational design for the enrichment of erucic and gondoic fatty acids. Adv Synth Catal 360(21):4115–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CAPES (Coordenação de Aperfeiçoamente de Pessoal de Nível Superior), Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvio M. P. Marcucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcucci, S.M.P., Araki, C.A., da Silva, L.S. et al. Influence of the chain length of the fatty acids present in different oils and the pore diameter of the support on the catalytic activity of immobilized lipase for ethyl ester production. Braz. J. Chem. Eng. 38, 511–522 (2021). https://doi.org/10.1007/s43153-021-00132-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00132-3

Keywords

Navigation