Skip to main content
Log in

Fatty Acids at the Crossroads of Mitochondria Dynamics in Macrophages

  • Immunometabolism (NOS Câmara, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review describes the current knowledge about lipid metabolism in macrophages, its relation to mitochondrial dynamics, and the consequences in macrophage behavior.

Recent Findings

Lipid droplet (LD) expansion is necessary for optimal macrophage inflammatory response, as M1 (pro-inflammatory) macrophages accumulate LDs within the cytoplasm as a response to leptin signaling. The broken tricarboxylic acid (TCA) cycle, a hallmark of M1 macrophage metabolism alongside fissioned mitochondria, generates accumulated citrate that feeds fatty acid synthesis (FAS), which supplies LDs with fatty acids. All of these pathways are connected in order to induce and maintain the M1 phenotype.

Summary

Macrophage profiles are closely related to their metabolism and mitochondrial network. Mitochondrial fission is linked with FAS in an essential mechanism for maintaining metabolic characteristics of M1 macrophages, in the context of LD expansion. While we do not know the full extent to which these factors interact, there are evident links between mitochondria dynamics and fatty acid metabolism in macrophage polarization which can be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012;148(6):1132–44. https://doi.org/10.1016/j.cell.2012.02.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merritt JL 2nd, Norris M, Kanungo S. Fatty acid oxidation disorders. Ann Transl Med. 2018;6(24):473. https://doi.org/10.21037/atm.2018.10.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akram M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys. 2014;68(3):475–8. https://doi.org/10.1007/s12013-013-9750-1.

    Article  CAS  PubMed  Google Scholar 

  4. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50(2):98–115. https://doi.org/10.2144/000113610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Correa-da-Silva F, Pereira JAS, de Aguiar CF, de Moraes-Vieira PMM. Mitoimmunity-when mitochondria dictates macrophage function. Cell Biol Int. 2018;42(6):651–5. https://doi.org/10.1002/cbin.10921.

    Article  CAS  PubMed  Google Scholar 

  6. Breda CNS, Davanzo GG, Basso PJ, Saraiva Camara NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol. 2019;26:101255. https://doi.org/10.1016/j.redox.2019.101255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benador IY, Veliova M, Liesa M, Shirihai OS. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. Cell Metab. 2019;29(4):827–35. https://doi.org/10.1016/j.cmet.2019.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64. https://doi.org/10.1038/nri1733.

    Article  CAS  PubMed  Google Scholar 

  9. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158–75. https://doi.org/10.1111/j.1600-065X.2012.01146.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van den Bossche J, O'Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017;38(6):395–406. https://doi.org/10.1016/j.it.2017.03.001. This review elucidates the relationship between macrophage phenotype and cellular metabolism.

  12. O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65. https://doi.org/10.1038/nri.2016.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bailey JD, Diotallevi M, Nicol T, McNeill E, Shaw A, Chuaiphichai S, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019;28(1):218–30 e7. https://doi.org/10.1016/j.celrep.2019.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167(2):457–70 e13. https://doi.org/10.1016/j.cell.2016.08.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013;496(7444):238–42. https://doi.org/10.1038/nature11986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42(3):419–30. https://doi.org/10.1016/j.immuni.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  17. Rath M, Muller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol. 2014;5:532. https://doi.org/10.3389/fimmu.2014.00532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW Jr. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 2013;18(6):816–30. https://doi.org/10.1016/j.cmet.2013.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Suppl):S138–43. https://doi.org/10.1194/jlr.R800079-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 2015;36(2):81–91. https://doi.org/10.1016/j.it.2014.12.005.

    Article  CAS  PubMed  Google Scholar 

  21. Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2015;2(8):808–24. https://doi.org/10.1016/j.ebiom.2015.06.020.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18(3):363–74. https://doi.org/10.1038/nm.2627.

    Article  CAS  PubMed  Google Scholar 

  23. Lancaster GI, Langley KG, Berglund NA, Kammoun HL, Reibe S, Estevez E, et al. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab. 2018;27(5):1096–110 e5. https://doi.org/10.1016/j.cmet.2018.03.014.

    Article  CAS  PubMed  Google Scholar 

  24. Ambrozova G, Martiskova H, Koudelka A, Ravekes T, Rudolph TK, Klinke A, et al. Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses. Free Radic Biol Med. 2016;90:252–60. https://doi.org/10.1016/j.freeradbiomed.2015.11.026.

    Article  CAS  PubMed  Google Scholar 

  25. Lee J, Ellis JM, Wolfgang MJ. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep. 2015;10(2):266–79. https://doi.org/10.1016/j.celrep.2014.12.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, Kinchen JM, et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 2019;29(2):443–56 e5. https://doi.org/10.1016/j.cmet.2018.12.004.

    Article  CAS  PubMed  Google Scholar 

  27. McGettrick AF, O'Neill LA. How metabolism generates signals during innate immunity and inflammation. J Biol Chem. 2013;288(32):22893–8. https://doi.org/10.1074/jbc.R113.486464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Divakaruni AS, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, Desousa BR, et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab. 2018;28(3):490–503 e7. https://doi.org/10.1016/j.cmet.2018.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Monteiro L, Pereira J, Palhinha L, Moraes-Vieira PMM. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol. 2019;106(3):703–16. https://doi.org/10.1002/JLB.MR1218-478R.

    Article  CAS  PubMed  Google Scholar 

  30. Tehlivets O, Scheuringer K, Kohlwein SD. Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta. 2007;1771(3):255–70. https://doi.org/10.1016/j.bbalip.2006.07.004.

    Article  CAS  PubMed  Google Scholar 

  31. Kastaniotis AJ, Autio KJ, Keratar JM, Monteuuis G, Makela AM, Nair RR, et al. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):39–48. https://doi.org/10.1016/j.bbalip.2016.08.011.

    Article  CAS  PubMed  Google Scholar 

  32. Solmonson A, DeBerardinis RJ. Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem. 2018;293(20):7522–30. https://doi.org/10.1074/jbc.TM117.000259.

    Article  CAS  PubMed  Google Scholar 

  33. Castoldi A, Naffah de Souza C, Camara NO, Moraes-Vieira PM. The macrophage switch in obesity development. Front Immunol. 2015;6:637. https://doi.org/10.3389/fimmu.2015.00637.

    Article  CAS  PubMed  Google Scholar 

  34. Wei X, Song H, Yin L, Rizzo MG, Sidhu R, Covey DF, et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature. 2016;539(7628):294–8. https://doi.org/10.1038/nature20117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Batista-Gonzalez A, Vidal R, Criollo A, Carreno LJ. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front Immunol. 2019;10:2993. https://doi.org/10.3389/fimmu.2019.02993.

    Article  CAS  PubMed  Google Scholar 

  36. Gianfrancesco MA, Dehairs J, L'Homme L, Herinckx G, Esser N, Jansen O, et al. Saturated fatty acids induce NLRP3 activation in human macrophages through K(+) efflux resulting from phospholipid saturation and Na, K-ATPase disruption. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(7):1017–30. https://doi.org/10.1016/j.bbalip.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

  37. Walch L, Copic A, Jackson CL. Fatty acid metabolism meets organelle dynamics. Dev Cell. 2015;32(6):657–8. https://doi.org/10.1016/j.devcel.2015.03.008.

    Article  CAS  PubMed  Google Scholar 

  38. Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell. 2015;32(6):678–92. https://doi.org/10.1016/j.devcel.2015.01.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A, Zoncu R, et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev Cell. 2017;42(1):9–21 e5. https://doi.org/10.1016/j.devcel.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415(6869):339–43. https://doi.org/10.1038/415339a.

    Article  CAS  PubMed  Google Scholar 

  41. Rinaldo P, Matern D, Bennett MJ. Fatty acid oxidation disorders. Annu Rev Physiol. 2002;64:477–502. https://doi.org/10.1146/annurev.physiol.64.082201.154705.

    Article  CAS  PubMed  Google Scholar 

  42. Bronfman M, Inestrosa NC, Leighton F. Fatty acid oxidation by human liver peroxisomes. Biochem Biophys Res Commun. 1979;88(3):1030–6. https://doi.org/10.1016/0006-291x(79)91512-2.

    Article  CAS  PubMed  Google Scholar 

  43. Singh H, Derwas N, Poulos A. Very long chain fatty acid beta-oxidation by rat liver mitochondria and peroxisomes. Arch Biochem Biophys. 1987;259(2):382–90. https://doi.org/10.1016/0003-9861(87)90504-2.

    Article  CAS  PubMed  Google Scholar 

  44. Wanders RJ, Waterham HR, Ferdinandusse S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol. 2015;3:83. https://doi.org/10.3389/fcell.2015.00083.

    Article  PubMed  Google Scholar 

  45. Iikuni N, Lam QL, Lu L, Matarese G, La Cava A. Leptin and inflammation. Curr Immunol Rev. 2008;4(2):70–9. https://doi.org/10.2174/157339508784325046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moraes-Vieira PM, Bassi EJ, Araujo RC, Camara NO. Leptin as a link between the immune system and kidney-related diseases: leading actor or just a coadjuvant? Obes Rev. 2012;13(8):733–43. https://doi.org/10.1111/j.1467-789X.2012.00997.x.

    Article  CAS  PubMed  Google Scholar 

  47. Moraes-Vieira PM, Bassi EJ, Larocca RA, Castoldi A, Burghos M, Lepique AP, et al. Leptin deficiency modulates allograft survival by favoring a Th2 and a regulatory immune profile. [corrected]. Am J Transplant. 2013;13(1):36–44. https://doi.org/10.1111/j.1600-6143.2012.04283.x.

    Article  CAS  PubMed  Google Scholar 

  48. Moraes-Vieira PM, Larocca RA, Bassi EJ, Peron JP, Andrade-Oliveira V, Wasinski F, et al. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells. Eur J Immunol. 2014;44(3):794–806. https://doi.org/10.1002/eji.201343592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou YT, Shimabukuro M, Koyama K, Lee Y, Wang MY, Trieu F, et al. Induction by leptin of uncoupling protein-2 and enzymes of fatty acid oxidation. Proc Natl Acad Sci U S A. 1997;94(12):6386–90. https://doi.org/10.1073/pnas.94.12.6386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mills EL, Kelly B, O'Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;18(5):488–98. https://doi.org/10.1038/ni.3704.

    Article  CAS  PubMed  Google Scholar 

  51. Byersdorfer CA. The role of fatty acid oxidation in the metabolic reprograming of activated t-cells. Front Immunol. 2014;5:641. https://doi.org/10.3389/fimmu.2014.00641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–59. https://doi.org/10.1016/j.cell.2012.02.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845. https://doi.org/10.1152/physrev.00030.2008.

    Article  CAS  PubMed  Google Scholar 

  54. Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018;62(3):341–60. https://doi.org/10.1042/EBC20170104.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 2018;39(1):6–18. https://doi.org/10.1016/j.it.2017.08.006.

    Article  CAS  PubMed  Google Scholar 

  56. Buck MD, O'Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166(1):63–76. https://doi.org/10.1016/j.cell.2016.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. • Li Y, He Y, Miao K, Zheng Y, Deng C, Liu TM. Imaging of macrophage mitochondria dynamics in vivo reveals cellular activation phenotype for diagnosis. Theranostics. 2020;10(7):2897–917. https://doi.org/10.7150/thno.40495. (This article characterizes mitochondrial organization in macrophage activation status).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gao Z, Li Y, Wang F, Huang T, Fan K, Zhang Y, et al. Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability. Nat Commun. 2017;8(1):1805. https://doi.org/10.1038/s41467-017-01919-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245–56. https://doi.org/10.1091/mbc.12.8.2245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kraus F, Ryan MT. The constriction and scission machineries involved in mitochondrial fission. J Cell Sci. 2017;130(18):2953–60. https://doi.org/10.1242/jcs.199562.

    Article  CAS  PubMed  Google Scholar 

  61. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. ER tubules mark sites of mitochondrial division. Science. 2011;334(6054):358–62. https://doi.org/10.1126/science.1207385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee H, Yoon Y. Mitochondrial fission and fusion. Biochem Soc Trans. 2016;44(6):1725–35. https://doi.org/10.1042/BST20160129.

    Article  CAS  PubMed  Google Scholar 

  63. Lee JE, Westrate LM, Wu H, Page C, Voeltz GK. Multiple dynamin family members collaborate to drive mitochondrial division. Nature. 2016;540(7631):139–43. https://doi.org/10.1038/nature20555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Osellame LD, Singh AP, Stroud DA, Palmer CS, Stojanovski D, Ramachandran R, et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J Cell Sci. 2016;129(11):2170–81. https://doi.org/10.1242/jcs.185165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 controls effective T cell immune-surveillance by regulating T cell migration, proliferation, and cMyc-dependent metabolic reprogramming. Cell Rep. 2018;25(11):3059–73 e10. https://doi.org/10.1016/j.celrep.2018.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Campello S, Lacalle RA, Bettella M, Manes S, Scorrano L, Viola A. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med. 2006;203(13):2879–86. https://doi.org/10.1084/jem.20061877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baixauli F, Martin-Cofreces NB, Morlino G, Carrasco YR, Calabia-Linares C, Veiga E, et al. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. EMBO J. 2011;30(7):1238–50. https://doi.org/10.1038/emboj.2011.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Park S, Won JH, Hwang I, Hong S, Lee HK, Yu JW. Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci Rep. 2015;5:15489. https://doi.org/10.1038/srep15489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang Y, Subramanian M, Yurdagul A Jr, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J, et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell. 2017;171(2):331–45 e22. https://doi.org/10.1016/j.cell.2017.08.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 2004;117(Pt 26):6535–46. https://doi.org/10.1242/jcs.01565.

    Article  CAS  PubMed  Google Scholar 

  71. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004;101(45):15927–32. https://doi.org/10.1073/pnas.0407043101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol. 2014;204(6):919–29. https://doi.org/10.1083/jcb.201308006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007;178(5):749–55. https://doi.org/10.1083/jcb.200704110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A. 2011;108(25):10190–5. https://doi.org/10.1073/pnas.1107402108.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–5. https://doi.org/10.1126/science.1219855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155(1):160–71. https://doi.org/10.1016/j.cell.2013.08.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684–96. https://doi.org/10.1016/j.celrep.2016.09.008. (This article highlights mitochondrial integrity in macrophage polarization).

    Article  CAS  PubMed  Google Scholar 

  78. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55. https://doi.org/10.1016/s1471-4906(02)02302-5.

    Article  CAS  PubMed  Google Scholar 

  79. Chen D, Xie J, Fiskesund R, Dong W, Liang X, Lv J, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 2018;9(1):873. https://doi.org/10.1038/s41467-018-03225-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bozza PT, Magalhaes KG, Weller PF. Leukocyte lipid bodies - biogenesis and functions in inflammation. Biochim Biophys Acta. 2009;1791(6):540–51. https://doi.org/10.1016/j.bbalip.2009.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. D'Avila H, Maya-Monteiro CM, Bozza PT. Lipid bodies in innate immune response to bacterial and parasite infections. Int Immunopharmacol. 2008;8(10):1308–15. https://doi.org/10.1016/j.intimp.2008.01.035.

    Article  CAS  PubMed  Google Scholar 

  82. Posokhova EN, Khoshchenko OM, Chasovskikh MI, Pivovarova EN, Dushkin MI. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors. Biochemistry (Mosc). 2008;73(3):296–304. https://doi.org/10.1134/s0006297908030097.

    Article  CAS  Google Scholar 

  83. Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, et al. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 2011;13(5):540–9. https://doi.org/10.1016/j.cmet.2011.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. • Castoldi A, Monteiro LB, van Teijlingen BN, Sanin DE, Rana N, Corrado M, et al. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun. 2020;11(1):4107. https://doi.org/10.1038/s41467-020-17881-3. (This article highlights the role of lipid droplets in macrophage inflammatory response).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rosas-Ballina M, Guan XL, Schmidt A, Bumann D. Classical activation of macrophages leads to lipid droplet formation without de novo fatty acid synthesis. Front Immunol. 2020;11:131. https://doi.org/10.3389/fimmu.2020.00131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Benador IY, Veliova M, Mahdaviani K, Petcherski A, Wikstrom JD, Assali EA, et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 2018;27(4):869–85 e6. https://doi.org/10.1016/j.cmet.2018.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boutant M, Kulkarni SS, Joffraud M, Ratajczak J, Valera-Alberni M, Combe R, et al. Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J. 2017;36(11):1543–58. https://doi.org/10.15252/embj.201694914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jiang H, Westerterp M, Wang C, Zhu Y, Ai D. Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia. 2014;57(11):2393–404. https://doi.org/10.1007/s00125-014-3350-5.

    Article  CAS  PubMed  Google Scholar 

  89. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett. 2010;584(7):1287–95. https://doi.org/10.1016/j.febslet.2010.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35. https://doi.org/10.1038/nrm.2017.95.

    Article  CAS  PubMed  Google Scholar 

  91. Powell JD, Pollizzi KN, Heikamp EB, Horton MR. Regulation of immune responses by mTOR. Annu Rev Immunol. 2012;30:39–68. https://doi.org/10.1146/annurev-immunol-020711-075024.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the São Paulo Research Foundation - FAPESP (grant numbers 2015/15626-8, 2016/23328-0, 2018/22505-0, 2019/10876-7, and 2019/24771-2), the Brazilian National Council for Scientific and Technological Development - CNPq (grant number 141553/2017-0) and Coordination of Superior Level Staff Improvement - CAPES for the funding and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Moraes-Vieira.

Ethics declarations

Code Availability

Not applicable

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Data Availability

Not applicable

Disclaimer

All figures are original and were designed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Immunometabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virgilio-da-Silva, J.V., Prodonoff, J.S., de Brito Monteiro, L. et al. Fatty Acids at the Crossroads of Mitochondria Dynamics in Macrophages. Curr. Tissue Microenviron. Rep. 1, 249–259 (2020). https://doi.org/10.1007/s43152-020-00025-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-020-00025-6

Keywords

Navigation