Skip to main content
Log in

Variable-coefficient viscoelastic wave equation with acoustic boundary conditions: global existence, blowup and energy decay rates

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

This paper deals with the following initial acoustic boundary value problem for a variable-coefficient wave equation with memory term

$$\begin{aligned}{} & {} u_{tt}-\Delta u-\Delta u_{t}-\Delta u_{tt}+\int _{0}^{t}b(t-s){\textrm{div}} (a_{1}(x)\nabla u(s)){\textrm{d}}s\\{} & {} \quad +\,a_{2}(x)u_{t}|u_{t}|^{q-2}=u|u|^{p-2}. \end{aligned}$$

Firstly, we get the global existence of solutions by energy estimates under some advisable assumptions on the kernel function b and variable coefficients \(a_{1}(x),\) \(a_{2}(x).\) In addition, we discuss the global nonexistence of solutions, and then derive the evaluate for the lifespan of weak solutions under some certain conditions. Finally, we establish the polynomial or exponential energy decay rates for global solutions by using perturbed energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This article describes entirely theoretical research. There is no data involved in this research.

References

  1. Al-Mahdi, A.M.: Optimal decay result for Kirchhoff plate equations with nonlinear damping and very general type of relaxation functions. Bound. Value Probl. 2019, 26 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Al-Mahdi, A.M., Al-Gharabli, M.M., Kafini, M., Al-Omari, S.: A stability result for a viscoelastic wave equation in the presence of finite and infinite memories. J. Math. 2022, 12 (2022)

    MathSciNet  Google Scholar 

  3. Al-Mahdi, A.M., Messaoudi, S.A., Al-Gharabli, M.M.: A stability result for a swelling porous system with nonlinear boundary dampings. J. Funct. Spaces 2022, 7 (2022)

    MathSciNet  MATH  Google Scholar 

  4. Al’shin, A.B., Korpusov, M.O., Siveshnikov, A.G.: Blow Up in Nonlinear Sobolev Type Equations. De Gruyter Series in Nonlinear Analysis and Applications, vol. 15, pp. 62–67. De Gruyter, Berlin/New York (2011)

  5. Beale, J.T.: Spectral properties of an acoustic boundary condition. Indiana Univ. Math. J. 25, 895–917 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Beale, J.T., Rosencrans, S.I.: Acoustic boundary conditions. Bull. Am. Math. Soc. 80, 1276–1278 (1974)

    MathSciNet  MATH  Google Scholar 

  7. Berrimi, S., Messaoudi, S.A.: Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Electron. J. Differ. Equ. 88, 10 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Berrimi, S., Messaoudi, S.A.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal.: Theory Methods Appl. 64, 2314–2331 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Boukhatem, Y., Benabderrahmane, B.: Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions. Nonlinear Anal.: Theory, Methods Appl. 97, 191–209 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Boukhatem, Y., Benabderrahmane, B.: Polynomial decay and blow up of solutions for variable coefficients viscoelastic wave equation with acoustic boundary conditions. Acta Math. Sin. Engl. Ser. 32, 153–174 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Cavalcanti, M.M., Oquendo, H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42, 1310–1324 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.: Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electron. J. Differ. Equ. 44, 1–14 (2002)

  13. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Martinez, P.: General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal.: Theory Methods Appl. 68, 177–193 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Frota, C.L., Vicente, A.: Stability for semilinear wave equation in an inhomogeneous medium with frictional localized damping and acoustic boundary conditions. SIAM J. Control Optim. 58, 2411–2445 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Di, H.F., Shang, Y.D.: Global existence and nonexistence of solutions for a fourth-order wave equation with nonlinear damping and source terms. Acta Math. Sci. Ser. A 35, 618–633 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Di, H.F., Shang, Y.D.: Blow-up phenomena for a class of generalized double dispersion equations. Acta Math. Sci. Ser. B 39, 567–579 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Di, H.F., Song, Z.F.: Global existence and blow-up phenomenon for a quasilinear viscoelastic equation with strong damping and source terms. Opusc. Math. 42, 119–155 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Di, H.F., Shang, Y.D., Peng, X.M.: Global existence and nonexistence of solutions for a viscoelastic wave equation with nonlinear boundary source term. Math. Nachr. 289, 1408–1432 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Frota, C.L., Goldstein, J.A.: Some nonlinear wave equations with acoustic boundary conditions. J. Differ. Equ. 164, 92–109 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Frota, C.L., Larkin, N.A.: Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains. Prog. Nonlinear Differ. Equ. Appl. 66, 297–312 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Gal, C.G., Goldstein, G.R., Goldstein, J.A.: Oscillatory boundary conditions for acoustic wave equations. J. Evol. Equ. 3, 623–635 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Georgiev, V., Todorova, G.: Existence of a solution of the wave equation with nonlinear damping and source term. J. Differ. Equ. 109, 295–308 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Graber, P.J.: Wave equation with porous nonlinear acoustic boundary conditions generates a well-posed dynamical system. Nonlinear Anal. 73, 3058–3068 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Graber, P.J., Said-Houari, B.: On the wave equation with semilinear porous acoustic boundary conditions. J. Differ. Equ. 252, 4898–4941 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Hao, J.G., Lv, M.X.: Energy decay for variable coefficient viscoelastic wave equation with acoustic boundary conditions in domains with nonlocally reacting boundary. Electron. J. Differ. Equ. 95, 13 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Jeong, J.M., Park, J.Y., Kang, Y.H.: Energy decay rates for the semilinear wave equation with memory boundary condition and acoustic boundary conditions. Comput. Math. Appl. 73, 1975–1986 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Jeong, J.M., Park, J.Y., Kang, Y.H.: Global nonexistence of solutions for a nonlinear wave equation with time delay and acoustic boundary conditions. Comput. Math. Appl. 76, 661–671 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Kolesov, A.Y., Mishchenko, E.F., Rozov, N.K.: Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations. Trudy Mat. Inst. Steklova 222, 3–191 (1998)

    MATH  Google Scholar 

  29. Lee, M.J., Park, J.Y., Park, S.H.: General decay of solutions of quasilinear wave equation with time-varying delay in the boundary feedback and acoustic boundary conditions. Math. Methods Appl. Sci. 40, 4560–4576 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Levine, H.A., Smith, R.A.: A potential well theory for the wave equation with a nonlinear boundary condition. J. Reine Angew. Math. 374, 23 (1987)

    MathSciNet  MATH  Google Scholar 

  31. Limam, A., Boukhatem, Y., Benabderrahmane, B.: New general stability for a variable coefficient thermo-viscoelastic-coupled system of second sound with acoustic boundary conditions. Comput. Appl. Math. 40, 20 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Liu, W.J.: Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions. Appl. Math. Lett. 38, 155–161 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Liu, W.J., Sun, Y.: General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions. Z. Angew. Math. Phys. 65, 125–134 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Liu, W.L., Yu, J.: On decay and blow-up of the solution for a viscoelastic wave equation with boundary damping and source terms. Nonlinear Anal.: Theory Methods Appl. 74, 2175–2190 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Lu, L.Q., Li, S.J., Chai, S.G.: On a viscoelastic equation with nonlinear boundary damping and source terms: global existence and decay of the solution. Nonlinear Anal.: Real World Appl. 12, 295–302 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal.: Theory Methods Appl. 69, 2589–2598 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Messaoudi, S.A., Al-Gharabli, M.M., Al-Mahdi, A.M.: On the decay of solutions of a viscoelastic wave equation with variable sources. Math. Methods Appl. Sci. 45, 8389–8411 (2022)

    MathSciNet  Google Scholar 

  38. Morse, P.M., Ingard, K.U.: Theoretical Acoustics. McGraw-Hill, New York (1968)

    Google Scholar 

  39. Munoz Rivera, J.E., Barbosa Sobrinho, J.: Existence and uniform rates of decay for contact problems in viscoelasticity. Appl. Anal. 67, 175–199 (1997)

    MathSciNet  MATH  Google Scholar 

  40. Munoz Rivera, J.E., Peres Salvatierra, A.: Asymptotic behaviour of the energy in partially viscoelastic materials. Q. Appl. Math. 59, 557–578 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Mustafa, M.I.: On the control of dissipative viscoelastic Timoshenko beams. Mediterr. J. Math. 18, 49 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Nakao, M.: Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305, 403–417 (1996)

    MathSciNet  MATH  Google Scholar 

  43. Park, J.Y., Ha, T.G.: Well-posedness and uniform decay rates for the Klein–Gordon equation with damping term and acoustic boundary conditions. J. Math. Phys. 50, 013506 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Park, J.Y., Park, S.H.: Decay rate estimates for wave equations of memory type with acoustic boundary conditions. Nonlinear Anal.: Theory Methods Appl. 74, 993–998 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Peyravi, A.: General decay and blow up of solutions for a system of viscoelastic wave equations with nonlinear boundary source terms. J. Math. Anal. Appl. 451, 1056–1076 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Rosenau, P.: Evolution and breaking of ion-acoustic waves. Phys. Fluids 31, 1317–1319 (1988)

    MATH  Google Scholar 

  47. Samsonov, A.M., Sokurinskaya, E.V.: Energy exchange between nonlinear waves in elastic wave guides and external media. In: Engelbrecht, J. (eds) Nonlinear Waves in Active Media, pp. 99–104. Springer, Berlin (1989)

  48. Samsonov, A.M.: Nonlinear strain waves in elastic wave guide. In: Jeffrey A., Engelbrecht J. (eds) Nonlinear Waves in Solids, pp. 349–382. Springer, Vienna (1994)

  49. Shivamoggi, B.K.: A symmetric regularized long wave equation for shallow water waves. Phys. Fluids 29, 890–891 (1986)

    MathSciNet  MATH  Google Scholar 

  50. Wang, S.B., Da, F.: On the asymptotic behavior of solution for the generalized double dispersion equation. Appl. Anal. 92, 1179–1193 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Xu, R.Z., Liu, Y.C., Yu, T.: Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations. Nonlinear Anal.: Theory Methods Appl. 71, 4977–4983 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Xu, R.Z., Yang, Y.B., Liu, Y.: Global well-posedness for strongly damped viscoelastic wave equation. Appl. Anal. 92, 138–157 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Yu, J.L., Shang, Y.D., Di, H.F.: Global existence, nonexistence, and decay of solutions for a viscoelastic wave equation with nonlinear boundary damping and source term. J. Math. Phys. 61, 071503 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Yu, J.L., Shang, Y.D., Di, H.F.: Global nonexistence for a viscoelastic wave equation with acoustic boundary conditions. Acta Math. Sci. Ser. B 40, 155–169 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the anonymous referees for useful comments and suggestions. This work was completed with the support of the Natural Science Foundation of China (no. 11801108), Guangdong Basic and Applied Basic Research Foundation (nos. 2021A1515010314, 2023A1515030107), the Natural Science Research Project of the Educational Department of Liaoning Province (no. JDL2020027), the Science and Technology Planning Project of Guangzhou City (no. 202201010111), the Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau (no. 202235103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafei Di.

Additional information

Communicated by Tom ter Elst.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Di, H. Variable-coefficient viscoelastic wave equation with acoustic boundary conditions: global existence, blowup and energy decay rates. Banach J. Math. Anal. 17, 68 (2023). https://doi.org/10.1007/s43037-023-00292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-023-00292-z

Keywords

Mathematics Subject Classification

Navigation