Skip to main content
Log in

An extended inertial Halpern-type ball-relaxed CQ algorithm for multiple-sets split feasibility problem

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

In an infinite-dimensional real Hilbert space setting, we introduce a new self-adaptive inertial Halpern-type projection algorithm for solving multiple-sets split feasibility problem assuming that the involved convex subsets are level subsets of strongly convex functions by approximating the original convex subsets by a sequence of closed balls instead of half-spaces. Since the projection onto the closed ball has a closed form, the proposed algorithm is hence easy to implement. Moreover, we construct a new self-adaptive stepsize that is bounded away from zero and is independent of the operator norm. Under some mild assumptions and without the usual Lipschitz’s continuity of the gradient operator assumption, we establish and prove a strong convergence of the sequence generated by the proposed algorithm. Several numerical illustrations indicate that the proposed algorithm is computationally efficient and competes well with some existing algorithms in the literature. The proposed method is an improvement and generalization of many results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not available.

References

  1. Abass, H.A., Jolaoso, L.O.: An inertial generalized viscosity approximation method for solving multiple-sets split feasibility problems and common fixed point of strictly pseudo-nonspreading mappings. Axioms 10(1), 1–18 (2021). https://doi.org/10.3390/axioms10010001

    Article  Google Scholar 

  2. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9(1–2), 3–11 (2001). https://doi.org/10.1023/A:1011253113155

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, J.P.: Optima and Equilibria: An Introduction to Nonlinear Analysis, vol. 140. Springer Science and Business Media, Berlin (2013)

    Google Scholar 

  4. Bauschke, H.H., Combettes, P.L., et al.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer, Berlin (2011). https://doi.org/10.1007/978-1-4419-9467-7

    Book  MATH  Google Scholar 

  5. Buong, N., Hoai, P.T.T., Binh, K.T.: Iterative regularization methods for the multiple-sets split feasibility problem in Hilbert spaces. Acta Appl. Math. 165(1), 183–197 (2020). https://doi.org/10.1007/s10440-019-00249-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Buong, N., Hoai, P.T.T., Binh, K.T.: New iterative regularization methods for the multiple-sets split feasibility problem. J. Comput. Appl. Math. 388, 113291 (2021). https://doi.org/10.1016/j.cam.2020.113291

    Article  MathSciNet  MATH  Google Scholar 

  7. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441–453 (2002). https://doi.org/10.1088/0266-5611/18/2/310

    Article  MathSciNet  MATH  Google Scholar 

  8. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20(1), 103–120 (2003). https://doi.org/10.1088/0266-5611/20/1/006

    Article  MathSciNet  MATH  Google Scholar 

  9. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces, vol. 2057. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-30901-4

    Book  MATH  Google Scholar 

  10. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: The split feasibility model leading to a unified approach for inversion problems in intensity-modulated radiation therapy. Technical Report 20 April: Department of Mathematics, University of Haifa, Israel (2005)

  11. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2), 221–239 (1994). https://doi.org/10.1007/BF02142692

    Article  MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Segal, A.: Iterative projection methods in biomedical inverse problems. Math. Methods Biomed. Imaging Intens.-Modul. Radiat. Therapy (IMRT) 10, 65–96 (2008)

    MathSciNet  Google Scholar 

  13. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21(6), 2071–2084 (2005). https://doi.org/10.1088/0266-5611/21/6/017

    Article  MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51(10), 2353–2365 (2006). https://doi.org/10.1088/0031-9155/51/10/001

    Article  Google Scholar 

  15. Cholamjiak, P., Suantai, S., et al.: A new CQ algorithm for solving split feasibility problems in Hilbert spaces. Bull. Malays. Math. Sci. Soc. 42(5), 2517–2534 (2019). https://doi.org/10.1007/s40840-018-0614-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Dai, Y.H.: Fast algorithms for projection on an ellipsoid. SIAM J. Optim. 16(4), 986–1006 (2006). https://doi.org/10.1137/040613305

    Article  MathSciNet  MATH  Google Scholar 

  17. Dang, Y., Sun, J., Xu, H.: Inertial accelerated algorithms for solving a split feasibility problem. J. Ind. Manag. Optim. 13(3), 1383–1394 (2017). https://doi.org/10.3934/jimo.2016078

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, Q., Yuan, H., Cho, Y., Rassias, T.M.: Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 12(1), 87–102 (2018). https://doi.org/10.1007/s11590-016-1102-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Gibali, A., Mai, D.T., et al.: A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. J. Ind. Manag. Optim. 15(2), 963–984 (2019). https://doi.org/10.3934/jimo.2018080

    Article  MathSciNet  MATH  Google Scholar 

  20. Gibali, A., Liu, L.W., Tang, Y.C.: Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim. Lett. 12(4), 817–830 (2018). https://doi.org/10.1007/s11590-017-1148-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Guan, J.L.: A new iterative algorithm for the multiple-sets split feasibility problem and the split equality fixed point problem. Mediterr. J. Math. 18(1), 1–24 (2021). https://doi.org/10.1007/s00009-020-01671-8

    Article  MathSciNet  MATH  Google Scholar 

  22. He, S., Zhao, Z.: Strong convergence of a relaxed CQ algorithm for the split feasibility problem. J. Inequal. Appl. 2013(1), 1–11 (2013). https://doi.org/10.1186/1029-242X-2013-197

    Article  MathSciNet  MATH  Google Scholar 

  23. He, S., Zhao, Z., Luo, B.: A relaxed self-adaptive CQ algorithm for the multiple-sets split feasibility problem. Optimization 64(9), 1907–1918 (2015). https://doi.org/10.1080/02331934.2014.895898

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y., Zhang, Y.: Bounded perturbation resilience of two modified relaxed CQ algorithms for the multiple-sets split feasibility problem. Axioms 10(3), 197 (2021). https://doi.org/10.3390/axioms10030197

    Article  Google Scholar 

  25. Li, H., Wu, Y., Wang, F.: New inertial relaxed CQ algorithms for solving split feasibility problems in Hilbert spaces. J. Math. 2021, 1–13 (2021). https://doi.org/10.1155/2021/6624509

    Article  MathSciNet  MATH  Google Scholar 

  26. López, G., Martin, V., Xu, H., et al.: Iterative algorithms for the multiple-sets split feasibility problem. In: Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, pp. 243–279. (2009)

  27. Lopez, G., Martin, V., Xu, H.K.: Perturbation techniques for nonexpansive mappings with applications. Nonlinear Anal. Real World Appl. 10(4), 2369–2383 (2009). https://doi.org/10.1016/j.nonrwa.2008.04.020

    Article  MathSciNet  MATH  Google Scholar 

  28. López, G., Martín-Márquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28(8), 085004 (2012). https://doi.org/10.1088/0266-5611/28/8/085004

    Article  MathSciNet  MATH  Google Scholar 

  29. Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51(2), 311–325 (2015). https://doi.org/10.1186/s13662-020-02915-3

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma, X., Liu, H.: An inertial Halpern-type CQ algorithm for solving split feasibility problems in Hilbert spaces. J. Appl. Math. Comput. (2021). https://doi.org/10.1007/s12190-021-01585-y

    Article  MATH  Google Scholar 

  31. Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set-Valued Anal. 15(1), 67–79 (2007). https://doi.org/10.1007/s11228-006-0027-3

    Article  MathSciNet  MATH  Google Scholar 

  32. Mewomo, O., Ogbuisi, F.: Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces. Quaest. Math. 41(1), 129–148 (2018). https://doi.org/10.2989/16073606.2017.1375569

    Article  MathSciNet  MATH  Google Scholar 

  33. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155(2), 447–454 (2003). https://doi.org/10.1016/S0377-0427(02)00906-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate \(O(1/k^{2})\). In: Dokl. akad. nauk Sssr, vol. 269, pp. 543–547 (1983)

  35. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  36. Sahu, D., Cho, Y., Dong, Q., Kashyap, M., Li, X.: Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces. Numer. Algorithms (2020). https://doi.org/10.1007/s11075-020-00999-2

    Article  MATH  Google Scholar 

  37. Shehu, Y.: Strong convergence theorem for multiple sets split feasibility problems in Banach spaces. Numer. Funct. Anal. Optim. 37(8), 1021–1036 (2016). https://doi.org/10.1080/01630563.2016.1185614

    Article  MathSciNet  MATH  Google Scholar 

  38. Shehu, Y., Vuong, P.T., Cholamjiak, P.: A self-adaptive projection method with an inertial technique for split feasibility problems in Banach spaces with applications to image restoration problems. J. Fixed Point Theory Appl. 21(2), 1–24 (2019). https://doi.org/10.1007/s11784-019-0684-0

    Article  MathSciNet  MATH  Google Scholar 

  39. Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Ind. Manag. Optim. 14(4), 1595–1615 (2018). https://doi.org/10.3934/jimo.2018023

    Article  MathSciNet  Google Scholar 

  40. Suantai, S., Pholasa, N., Cholamjiak, P.: Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems. Rev. Real Acad. Cienc. Exact. Fís. Nat. Ser. A Mat. 113(2), 1081–1099 (2019). https://doi.org/10.1007/s13398-018-0535-7

    Article  MathSciNet  MATH  Google Scholar 

  41. Taddele, G.H., Kumam, P., Gebrie, A.G., Sitthithakerngkiet, K.: Half-space relaxation projection method for solving multiple-set split feasibility problem. Math. Comput. Appl. 25(3), 47–71 (2020). https://doi.org/10.3390/mca25030047

    Article  MathSciNet  Google Scholar 

  42. Taddele, G.H., Kumam, P., Gebrie, A.G.: An inertial extrapolation method for multiple-set split feasibility problem. J. Inequal. Appl. 2020(1), 1–22 (2020). https://doi.org/10.1186/s13660-020-02508-4

    Article  MathSciNet  MATH  Google Scholar 

  43. Taddele, G.H., Kumam, P., Gebrie, A.G., Abubakar, J.: Ball-relaxed projection algorithms for multiple-sets split feasibility problem. Optimization (2021). https://doi.org/10.1080/02331934.2021.1905640

    Article  Google Scholar 

  44. Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16(7), 1449–1459 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Wang, J., Hu, Y., Li, C., Yao, J.C.: Linear convergence of CQ algorithms and applications in gene regulatory network inference. Inverse Probl. 33(5), 055017 (2017). https://doi.org/10.1088/1361-6420/aa6699

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26(10), 105018 (2010). https://doi.org/10.1088/0266-5611/26/10/105018

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, T., Shi, L.: Multiple-sets split feasibility problem and split equality fixed point problem for firmly quasi-nonexpansive or nonexpansive mappings. J. Inequal. Appl. 2021(1), 1–21 (2021). https://doi.org/10.1186/s13660-021-02656-1

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20(4), 1261–1266 (2004). https://doi.org/10.1088/0266-5611/20/4/014

    Article  MathSciNet  MATH  Google Scholar 

  49. Yao, Y., Postolache, M., Liou, Y.C.: Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013(1), 1–12 (2013). https://doi.org/10.1186/1687-1812-2013-201

    Article  MathSciNet  MATH  Google Scholar 

  50. Yao, Y., Postolache, M., Zhu, Z.: Gradient methods with selection technique for the multiple-sets split feasibility problem. Optimization 69(2), 269–281 (2020). https://doi.org/10.1080/02331934.2019.1602772

    Article  MathSciNet  MATH  Google Scholar 

  51. Yu, H., Zhan, W., Wang, F.: The ball-relaxed CQ algorithms for the split feasibility problem. Optimization 67(10), 1687–1699 (2018). https://doi.org/10.1080/02331934.2018.1485677

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhao, J., Zhang, Y., Yang, Q.: Modified projection methods for the split feasibility problem and the multiple-sets split feasibility problem. Appl. Math. Comput. 219(4), 1644–1653 (2012). https://doi.org/10.1016/j.amc.2012.08.005

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT. Guash Haile Taddele is supported by the Petchra Pra Jom Klao Ph.D. Research Scholarship from King Mongkut’s University of Technology Thonburi (Grant no. 37/2561). Moreover, this project is funded by National Research Council of Thailand (NRCT) under Research Grants for Talented Mid-Career Researchers (Contract no. N41A640089).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Poom Kumam.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Constantin Niculescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taddele, G.H., Kumam, P. & Berinde, V. An extended inertial Halpern-type ball-relaxed CQ algorithm for multiple-sets split feasibility problem. Ann. Funct. Anal. 13, 48 (2022). https://doi.org/10.1007/s43034-022-00190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-022-00190-9

Keywords

Mathematics Subject Classification

Navigation