Skip to main content
Log in

Oocyte Vitrification Reduces its Capability to Repair Sperm DNA Fragmentation and Impairs Embryonic Development

  • Reproductive Genetics: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Oocytes play a crucial role in repairing sperm DNA damage, which can affect the next generation; however, certain factors can impair this ability. This study examined whether oocyte vitrification, a widely used method for fertility preservation, negatively affects repair ability. Male DBA/2 mice (n = 28) were injected with 101.60 µmol/100 g body weight of tert-Butyl hydroperoxide (tBHP) for 14 days to induce sperm DNA damage. Histological changes, sperm functions, and DNA fragmentation were assessed using the TUNEL assay. Cumulus-oocyte-complexes (COCs) of superovulated female DBA/2 mice (n = 28) were vitrified using the Cryotop method. Fresh and vitrified oocytes were then fertilized by tBHP-treated and untreated sperms, and subsequent embryonic development was monitored. Additionally, the expression of Mre11a, Rad51, Brca1, and Xrcc4 was assessed in resulting zygotes and blastocysts using real-time PCR. The sperm tBHP treatment reduced differentiated spermatogenic cells in the testicular tissue, sperm concentration, and motility, while increasing DNA fragmentation (P < 0.05). The fertilization rate was decreased in the tBHP-treated sperm–vitrified oocyte group (P < 0.05), and the two-cell rate diminished in tBHP-treated sperm–fresh and vitrified oocyte groups (P < 0.05). The four-cell to blastocyst rate decreased in the untreated sperm–vitrified oocyte and the tBHP-treated sperm–fresh and vitrified oocyte groups (P < 0.05), and the tBHP-treated sperm–vitrified oocyte groups had the lowest blastocyst rate. In zygotes, Brca1 was upregulated in the tBHP-treated sperm–vitrified oocyte group (P < 0.05). Also, in blastocysts, Rad51, Brca1, and Xrcc4 were significantly upregulated in the untreated sperm–vitrified oocytes group (P < 0.05). Damages to the oocyte due to vitrification can disrupt the repair of sperm DNA fragmentation and consequently impair the embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martin JH, Aitken RJ, Bromfield EG, Nixon B. DNA damage and repair in the female germline: contributions to ART. Hum Reprod Update. 2019;25:180–201.

    Article  PubMed  Google Scholar 

  2. Gao Z, Moorjani P, Sasani TA, Pedersen BS, Quinlan AR, Jorde LB, et al. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc Natl Acad Sci U S A. 2019;116:9491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Immler S. The sperm factor: paternal impact beyond genes. Heredity (Edinb). 2018;121:239–47 (Springer US).

    Article  CAS  PubMed  Google Scholar 

  4. Henkel R, Leisegang K. Origins of sperm DNA damage. In: Parekattil S, Esteves S, Agarwal A, (eds.) Male infertility. Springer: Cham; 2020. p. 361–75.

    Chapter  Google Scholar 

  5. Esteves SC, Santi D, Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology England. 2020;8:53–81.

    Article  Google Scholar 

  6. Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online Netherlands. 2014;28:684–703.

    Article  CAS  Google Scholar 

  7. González-Marín C, Gosálvez J, Roy R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int J Mol Sci. 2012;13:14026–52.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Drevet JR, Aitken RJ. Oxidation of sperm nucleus in mammals: a physiological necessity to some extent with adverse impacts on oocyte and offspring. Antioxidants (Basel). 2020;9(2):95. https://doi.org/10.3390/antiox9020095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aitken RJ. Role of sperm DNA damage in creating de-novo mutations in human offspring: the ‘post-meiotic oocyte collusion’ hypothesis. Reprod Biomed Online. 2022;45:109–24. https://www.sciencedirect.com/science/article/pii/S1472648322001493.

  10. Stringer JM, Winship A, Zerafa N, Wakefield M, Hutt K. Oocytes can efficiently repair DNA double-strand breaks to restore genetic integrity and protect offspring health. Proc Natl Acad Sci U S A. 2020;117:1–10.

    Article  Google Scholar 

  11. Thompson LH, Schild D. Recombinational DNA repair and human disease. Mutat Res - Fundam Mol Mech Mutagen. 2002;509:49–78.

    Article  CAS  Google Scholar 

  12. Mitchell LA, De Iuliis GN, Aitken RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl England. 2011;34:2–13.

    Article  CAS  Google Scholar 

  13. Newman H, Catt S, Vining B, Vollenhoven B, Horta F. DNA repair and response to sperm DNA damage in oocytes and embryos, and the potential consequences in ART: a systematic review. Mol Hum Reprod [Internet]. 2022;28:gaab071. https://doi.org/10.1093/molehr/gaab071.

    Article  CAS  PubMed  Google Scholar 

  14. Sasaki H, Hamatani T, Kamijo S, Iwai M, Kobanawa M, Ogawa S, et al. Impact of oxidative stress on age-associated decline in oocyte developmental competence. Front Endocrinol (Lausanne). 2019;10:811.

    Article  PubMed  Google Scholar 

  15. Leem J, Bai G-Y, Oh JS. The capacity to repair sperm DNA damage in zygotes is enhanced by inhibiting WIP1 activity. Front cell Dev Biol. 2022;10:841327.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet England. 2008;17:1922–37.

    Article  CAS  Google Scholar 

  17. Jaroudi S, SenGupta S. DNA repair in mammalian embryos. Mutat Res Netherlands. 2007;635:53–77.

    Article  CAS  Google Scholar 

  18. Thompson LH, Schild D. Recombinational DNA repair and human disease. Mutat Res Netherlands. 2002;509:49–78.

    Article  CAS  Google Scholar 

  19. Powell MD, Manandhar G, Spate L, Sutovsky M, Zimmerman S, Sachdev SC, et al. Discovery of putative oocyte quality markers by comparative ExacTag proteomics. Proteomics Clin Appl. 2010;4:337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esbert M, Pacheco A, Soares SR, Amorós D, Florensa M, Ballesteros A, et al. High sperm DNA fragmentation delays human embryo kinetics when oocytes from young and healthy donors are microinjected. Andrology England. 2018;6:697–706.

    Article  CAS  Google Scholar 

  21. Horta F, Catt S, Ramachandran P, Vollenhoven B, Temple-Smith P. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice. Hum Reprod. 2020;35:529–44.

    Article  CAS  PubMed  Google Scholar 

  22. Horta F, Ravichandran A, Catt S, Vollenhoven B, Temple-Smith P. Ageing and ovarian stimulation modulate the relative levels of transcript abundance of oocyte DNA repair genes during the germinal vesicle-metaphase II transition in mice. J Assist Reprod Genet. 2021;38:55–69.

    Article  PubMed  Google Scholar 

  23. Martin JH, Bromfiel EG, Aitken RJ, Lord T, Nixon B. Double strand break DNA repair occurs via non-homologous end- joining in mouse MII oocytes. Sci Rep. 2018;8:9685.

    Article  PubMed  PubMed Central  Google Scholar 

  24. López A, Ducolomb Y, Casas E, Retana-Márquez S, Betancourt M, Casillas F. Effects of porcine immature oocyte vitrification on actin microfilament distribution and chromatin integrity during early embryo development in vitro. Front cell Dev Biol. 2021;9:636765.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Turathum B, Roytrakul S, Changsangfa C, Sroyraya M, Tanasawet S, Kitiyanant Y, et al. Missing and overexpressing proteins in domestic cat oocytes following vitrification and in vitro maturation as revealed by proteomic analysis. Biol Res. 2018;51:27.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23:139–55.

    CAS  PubMed  Google Scholar 

  27. Chang H, Chen H, Zhang L, Wang Y, Xie X, Zhang Y, et al. Effect of oocyte vitrification on DNA damage in metaphase II oocytes and the resulting preimplantation embryos. Mol Reprod Dev United States. 2019;86:1603–14.

    Article  CAS  Google Scholar 

  28. Matilla E, Martín-Cano FE, González-Fernández L, Sánchez-Margallo FM, Álvarez IS, MacÍas-García B. N-acetylcysteine addition after vitrification improves oocyte mitochondrial polarization status and the quality of embryos derived from vitrified murine oocytes. BMC Vet Res. 2019;15:31.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee HH, Lee HJ, Kim HJ, Lee JH, Ko Y, Kim SM, et al. Effects of antifreeze proteins on the vitrification of mouse oocytes: comparison of three different antifreeze proteins. Hum Reprod. 2015;30:2110–9.

    Article  CAS  PubMed  Google Scholar 

  30. Pereira BC, Ortiz I, Dorado JM, Diaz-Jimenez MA, Consuegra C, Gosalvez J, et al. Effect of permeable cryoprotectant-free vitrification on DNA fragmentation of equine oocyte–cumulus cells. Reprod Domest Anim. 2019;54:53–6.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao X-M, Du W-H, Wang D, Hao H-S, Liu Y, Qin T, et al. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil Steril. 2011;95:2786–8 United States.

    Article  CAS  PubMed  Google Scholar 

  32. Wu Z, Pan B, Qazi IH, Yang H, Guo S, Yang J, Zhang Y, Zeng C, Zhang M, Han H, Meng Q, Zhou G. Melatonin improves in vitro development of vitrified-warmed mouse germinal vesicle oocytes potentially via modulation of spindle assembly checkpoint-related genes. Cells. 2019;8(9):1009. https://doi.org/10.3390/cells8091009.

  33. Monzo C, Haouzi D, Roman K, Assou S, Dechaud H, Hamamah S. Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes. Hum Reprod. 2012;27:2160–8.

    Article  CAS  PubMed  Google Scholar 

  34. Khodavandpour Z, Zavareh S, Farrokh P, Nasiri M. Assessment of DNA repair gene expressions in vitrified mouse preantral follicles. Cell J. 2020;22:81–8.

    Google Scholar 

  35. Somfai T, Haraguchi S, Dang-Nguyen TQ, Kaneko H, Kikuchi K. Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage. PLoS One. 2023;18:e0282959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baniasadi F, Hajiaghalou S, Shahverdi A, Pirhajati V, Fathi R. Static magnetic field halves cryoinjuries of vitrified mouse COCs, improves their functions and modulates pluripotency of derived blastocysts. Theriogenology. 2021;163:31–42.

    Article  CAS  Google Scholar 

  37. Baniasadi F, Hajiaghalou S, Shahverdi A, et al. The beneficial effects of static magnetic field and iron oxide nanoparticles on the vitrification of mature mice oocytes. Reproductive Sciences. 2023;30(7):2122–2136. https://doi.org/10.1007/s43032-022-01144-1.

  38. Fatemi N, Sanati MH, Jamali Zavarehei M, Ayat H, Esmaeili V, Golkar-Narenji A, et al. Effect of tertiary-butyl hydroperoxide (TBHP)-induced oxidative stress on mice sperm quality and testis histopathology. Andrologia. 2013;45:232–9.

    Article  CAS  Google Scholar 

  39. Fatemi N, Sanati MH, Shamsara M, Moayer F, Zavarehei MJ, Pouya A, et al. TBHP-induced oxidative stress alters microRNAs expression in mouse testis. J Assist Reprod Genet. 2014;31:1287–93.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Malatesta M. Histological and histochemical methods - theory and practice. Eur J Histochem. 2016;60. Available from: https://www.ejh.it/index.php/ejh/article/view/2639.

  41. Stringer JM, Winship A, Liew SH, Hutt K. The capacity of oocytes for DNA repair. Cell Mol Life Sci. 2018;75:2777–92. https://doi.org/10.1007/s00018-018-2833-9. Springer International Publishing.

    Article  CAS  PubMed  Google Scholar 

  42. Ješeta M, Myšková M, Žáková J, Crha I, Crha K, Chmelikova E, et al. Can oocytes repair fragmented DNA of spermatozoa? Med J Cell Biol. 2020;8:73–7.

    Article  Google Scholar 

  43. Ribas-Maynou J, Benet J. Single and double strand sperm DNA damage: Different reproductive effects on male fertility. Genes (Basel). 2019;10(2):105. https://doi.org/10.3390/genes10020105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winship AL, Stringer JM, Liew SH, Hutt KJ. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing. Hum Reprod Update. 2018;24:119–34.

    Article  CAS  PubMed  Google Scholar 

  45. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999;27:916–21.

    Article  CAS  PubMed  Google Scholar 

  46. Chetty CS, Vemuri MC, Campbell K, Suresh C. Lead-induced cell death of human neuroblastoma cells involves GSH deprivation. Cell Mol Biol Lett. 2005;10:413–23.

    CAS  PubMed  Google Scholar 

  47. Kaur P, Kaur G, Bansal MP. Upregulation of AP1 by tertiary butyl hydroperoxide induced oxidative stress and subsequent effect on spermatogenesis in mice testis. Mol Cell Biochem. 2008;308:177–81.

    Article  CAS  PubMed  Google Scholar 

  48. Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Biochim Biophys Acta. 2012;1823:1767–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.

    Article  PubMed  Google Scholar 

  50. Li Z, Wang L, Cai J, Huang H. Correlation of sperm DNA damage with IVF and ICSI outcomes: a systematic review and meta-analysis. J Assist Reprod Genet. 2006;23:367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lewis SEM, Aitken RJ, Conner SJ, De Iuliis G, Evenson DP, Henkel R, et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online. 2013;27:325–37.

    Article  CAS  PubMed  Google Scholar 

  52. Paul C, Murray AA, Spears N, Saunders PTK. A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction. 2008;136:73–84.

    Article  CAS  PubMed  Google Scholar 

  53. Fatehi AN, Bevers MM, Schoevers E, Roelen BAJ, Colenbrander B, Gadella BM. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl. 2006;27:176–88.

    Article  CAS  PubMed  Google Scholar 

  54. Sun MH, Yang M, Xie FY, Wang W, Zhang L, Shen W, Yin S, Ma JY. DNA Double-strand breaks induce the nuclear actin filaments formation in cumulus-enclosed oocytes but not in denuded oocytes. PLoS One. 2017;12(1):e0170308. https://doi.org/10.1371/journal.pone.0170308.

  55. De Gheselle S, De Sutter P, Tilleman K. In-vitro development of embryos derived from vitrified-warmed oocytes is delayed compared with embryos derived from fresh oocytes: a time-lapse sibling oocyte study. Reprod Biomed Online. 2020;40:82–90.

    Article  PubMed  Google Scholar 

  56. Sudiman J, Lee A, Ong KL, Yuan WZ, Jansen S, Temple-Smith P, et al. Tolerance of lamb and mouse oocytes to cryoprotectants during vitrification. Zygote England. 2019;27:36–45.

    Article  CAS  Google Scholar 

  57. Wang N, Hao H-S, Li C-Y, Zhao Y-H, Wang H-Y, Yan C-L, et al. Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. Sci Rep. 2017;7:10652.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Somfai T, Ozawa M, Noguchi J, Kaneko H, Kuriani Karja NW, Farhudin M, et al. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology. 2007;55:115–26.

    Article  CAS  PubMed  Google Scholar 

  59. Khokhlova EV, Fesenko ZS, Sopova JV, Leonova EI. Features of DNA repair in the early stages of mammalian embryonic development. Genes (Basel). 2020;11(10):1138. https://doi.org/10.3390/genes11101138.

  60. Musson R, Gąsior Ł, Bisogno S, Ptak GE. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update. 2022;28(3):376–99. https://doi.org/10.1093/humupd/dmab046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jaroudi S, Kakourou G, Cawood S, Doshi A, Ranieri DM, Serhal P, et al. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod [Internet]. 2009;24:2649–55. https://doi.org/10.1093/humrep/dep224.

    Article  CAS  PubMed  Google Scholar 

  62. Stigliani S, Moretti S, Anserini P, Casciano I, Venturini PL, Scaruffi P. Storage time does not modify the gene expression profile of cryopreserved human metaphase II oocytes. Hum Reprod England. 2015;30:2519–26.

    Article  CAS  Google Scholar 

  63. Yan CT, Kaushal D, Murphy M, Zhang Y, Datta A, Chen C, et al. XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice. Proc Natl Acad Sci U S A. 2006;103:7378–83 (United States).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shirazi A, Naderi MM, Hassanpour H, Heidari M, Borjian S, Sarvari A, et al. The effect of ovine oocyte vitrification on expression of subset of genes involved in epigenetic modifications during oocyte maturation and early embryo development. Theriogenology. 2016;86:2136–46 (United States).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all colleagues in the embryology lab, sperm biology lab, animal science lab, molecular lab, and histology lab of Royan Institute.

Funding

This project (96000285) was funded by Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine.

Author information

Authors and Affiliations

Authors

Contributions

N.K. conducted all of the experimental work and drafted the manuscript. R.F. designed and supervised the study and interpreted results, mentioned fundamental advice to develop the experiment, and reviewed the manuscript. V.A. ran a statistical analysis, mentioned fundamental advice to develop the experiment, and reviewed the manuscript. H.G. proposed the hypothesis, designed and supervised the study and interpreted results, mentioned fundamental advice to develop the experiment, and reviewed the manuscript. All authors contributed to the report.

Corresponding authors

Correspondence to Rouhollah Fathi or Hamid Gourabi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 2519 KB)

Supplementary file2 (TIF 657 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajedehi, N., Fathi, R., Akbarinejad, V. et al. Oocyte Vitrification Reduces its Capability to Repair Sperm DNA Fragmentation and Impairs Embryonic Development. Reprod. Sci. (2023). https://doi.org/10.1007/s43032-023-01419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-023-01419-1

Keywords

Navigation