Skip to main content
Log in

Effect of SGLT2 Inhibitors on Improving Glucolipid Metabolism and Reproductive Hormone Status in Overweight/Obese Women with PCOS: A Systematic Review and Meta-Analysis

  • Reproductive Endocrinology: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background

Obesity, insulin resistance, and hyperandrogenemia are commonly seen in women with polycystic ovary syndrome (PCOS), and these three conditions form a vicious cycle leading to reproductive and metabolic abnormalities. Metformin improves the symptoms of PCOS by increasing insulin sensitivity but is not therapeutically optimal. Recent studies have reported that sodium-glucose co-transporter protein receptor inhibitors improve insulin resistance and reduce the weight of patients with PCOS. We performed a meta-analysis to assess the influence of sodium-glucose co-transporter protein-2 (SGLT2) inhibitors on anthropometric, glycolipid metabolism and reproductive outcomes after therapy of overweight/obese women with PCOS.

Methods

We searched the relevant literature published up to April 2023. Information on the effect of SGLT2 inhibitors on overweight/obese patients with PCOS was extracted independently by two reviewers. Review Manager 5.3 was used for meta-analysis.

Results

Five randomized controlled trials that met our criteria were retrieved. Our meta-analysis demonstrated that in overweight/obese patients with PCOS, SGLT2 inhibitors treatment was significantly superior to metformin treatment in terms of reducing body weight (P = 0.02, I2 = 36%), decreasing dehydroepiandrosterone sulfate concentrations [SMD = -0.42, 95% CI (-0.76, -0.07), I2 = 22%, P = 0.02], and reducing the incidence of nausea [RR = 0.35, 95% CI (0.21, 0.60), I2 = 71%, P = 0.0001].

Conclusions

SGLT2 inhibitors are a possible alternative therapy for treating overweight/obese women with PCOS who do not respond favorably to metformin treatment. However, further large randomized controlled trials and cost-effectiveness analyses are warranted to guide the implementation of SGLT2 inhibitors treatment in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Lizneva D. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6–15.

    Article  PubMed  Google Scholar 

  2. Norman RJ. Polycystic ovary syndrome. Lancet. 2007;370(9588):685–97.

    Article  CAS  PubMed  Google Scholar 

  3. Nandi A. Polycystic ovary syndrome. Endocrinol Metab Clin North Am. 2014;43(1):123–47.

    Article  PubMed  Google Scholar 

  4. Rasquin LI, Anastasopoulou C, Mayrin JV. Polycystic ovarian disease. Treasure Island: StatPearls Publishing; 2023.

  5. Barry JA, Azizia MM, Hardiman PJ. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(5):748–58.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bagir GS. Body Mass Index below Obesity Threshold Implies Similar Cardiovascular Risk among Various Polycystic Ovary Syndrome Phenotypes. Med Princ Pract. 2016;25(1):61–6.

    Article  PubMed  Google Scholar 

  7. Wang FF. Pharmacologic therapy to induce weight loss in women who have obesity/overweight with polycystic ovary syndrome: a systematic review and network meta-analysis. Obes Rev. 2018;19(10):1424–45.

    Article  PubMed  Google Scholar 

  8. Stepto NK. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum Reprod. 2013;28(3):777–84.

    Article  CAS  PubMed  Google Scholar 

  9. Mahalingaiah S, Diamanti-Kandarakis E. Targets to treat metabolic syndrome in polycystic ovary syndrome. Expert Opin Ther Targets. 2015;19(11):1561–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubin KH. Development and Risk Factors of Type 2 Diabetes in a Nationwide Population of Women With Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2017;102(10):3848–57.

    Article  PubMed  Google Scholar 

  11. Li Y. Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci. 2019;228:167–75.

    Article  CAS  PubMed  Google Scholar 

  12. Lashen H. Role of metformin in the management of polycystic ovary syndrome. Ther Adv Endocrinol Metab. 2010;1(3):117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Teede HJ. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602–18.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Practice Committee of the American Society for Reproductive Medicine. Role of metformin for ovulation induction in infertile patients with polycystic ovary syndrome (PCOS): a guideline. Fertil Steril. 2017;108(3):426–41.

  15. Dunaif A. Drug insight: insulin-sensitizing drugs in the treatment of polycystic ovary syndrome–a reappraisal. Nat Clin Pract Endocrinol Metab. 2008;4(5):272–83.

    Article  CAS  PubMed  Google Scholar 

  16. Chen X, He S, Wang D. Effects of metformin on body weight in polycystic ovary syndrome patients: model-based meta-analysis. Expert Rev Clin Pharmacol. 2021;14(1):121–30.

    Article  CAS  PubMed  Google Scholar 

  17. Vallon V, Verma S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annu Rev Physiol. 2021;83:503–28.

    Article  CAS  PubMed  Google Scholar 

  18. Marinkovic-Radosevic J. Exploring new treatment options for polycystic ovary syndrome: Review of a novel antidiabetic agent SGLT2 inhibitor. World J Diabetes. 2021;12(7):932–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pruett JE. 2021 Impact of SGLT-2 Inhibition on Cardiometabolic Abnormalities in a Rat Model of Polycystic Ovary Syndrome. Int J Mol Sci. 2021;22(5):2576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X. Sodium Glucose Co-Transporter 2 Inhibitors Ameliorate Endothelium Barrier Dysfunction Induced by Cyclic Stretch through Inhibition of Reactive Oxygen Species. Int J Mol Sci. 2021;22(11):6044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. 2017;13(1):11–26.

    Article  CAS  PubMed  Google Scholar 

  22. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.

  23. Legro RS. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2013;98(12):4565–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elkind-Hirsch KE. Exenatide, Dapagliflozin, or Phentermine/Topiramate Differentially Affect Metabolic Profiles in Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2021;106(10):3019–33.

    Article  PubMed  Google Scholar 

  25. Htike ZZ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: A systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab. 2017;19(4):524–36.

    Article  CAS  PubMed  Google Scholar 

  26. Han Y, Li Y, He B. GLP-1 receptor agonists versus metformin in PCOS: a systematic review and meta-analysis. Reprod Biomed Online. 2019;39(2):332–42.

    Article  CAS  PubMed  Google Scholar 

  27. Siamashvili M, Davis SN. Update on the effects of GLP-1 receptor agonists for the treatment of polycystic ovary syndrome. Expert Rev Clin Pharmacol. 2021;14(9):1081–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J. Canagliflozin combined with metformin versus metformin monotherapy for endocrine and metabolic profiles in overweight and obese women with polycystic ovary syndrome: A single-center, open-labeled prospective randomized controlled trial. Front Endocrinol (Lausanne). 2022;13:1003238.

    Article  PubMed  Google Scholar 

  29. Cai M. Efficacy of canagliflozin versus metformin in women with polycystic ovary syndrome: A randomized, open-label, noninferiority trial. Diabetes Obes Metab. 2022;24(2):312–20.

    Article  CAS  PubMed  Google Scholar 

  30. Javed Z. Effects of empagliflozin on metabolic parameters in polycystic ovary syndrome: A randomized controlled study. Clin Endocrinol (Oxf). 2019;90(6):805–13.

    Article  CAS  PubMed  Google Scholar 

  31. Zeng Q, Xu X, Xin L. Effect of canagliflozin combined with metformin on endocrine and metabolic levels in overweight and obese women with polycystic ovary syndrome (in Chinese). Maternal & Child Health Care of China. 2022;37(24):4649–52.

    CAS  Google Scholar 

  32. McMurray JJV. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng RJ. Association of SGLT2 Inhibitors With Risk of Atrial Fibrillation and Stroke in Patients With and Without Type 2 Diabetes: A Systemic Review and Meta-Analysis of Randomized Controlled Trials. J Cardiovasc Pharmacol. 2022;79(2):e145–52.

    Article  CAS  PubMed  Google Scholar 

  34. Perkovic V. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  35. Berni TR, Morgan CL, Rees DA. Women with polycystic ovary syndrome have an increased risk of major cardiovascular events: A population study. J Clin Endocrinol Metab. 2021;106(9):e3369–80.

  36. Wekker V. Long-term cardiometabolic disease risk in women with PCOS: a systematic review and meta-analysis. Hum Reprod Update. 2020;26(6):942–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Catalano PM. Obesity, insulin resistance, and pregnancy outcome. Reproduction. 2010;140(3):365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lainez NM, Coss D. obesity, neuroinflammation, and reproductive function. Endocrinology. 2019;160(11):2719–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ormazabal V. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pruett JE. Mitochondrial function and oxidative stress in white adipose tissue in a rat model of PCOS: effect of SGLT2 inhibition. Biol Sex Differ. 2022;13(1):45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He YL. The effects of licogliflozin, a dual SGLT1/2 inhibitor, on body weight in obese patients with or without diabetes. Diabetes Obes Metab. 2019;21(6):1311–21.

    Article  CAS  PubMed  Google Scholar 

  42. Tan S. Licogliflozin versus placebo in women with polycystic ovary syndrome: A randomized, double-blind, phase 2 trial. Diabetes Obes Metab. 2021;23(11):2595–9.

    Article  CAS  PubMed  Google Scholar 

  43. Labrie F. Is dehydroepiandrosterone a hormone? J Endocrinol. 2005;187(2):169–96.

    Article  CAS  PubMed  Google Scholar 

  44. Leowattana W. DHEAS as a new diagnostic tool. Clin Chim Acta. 2004;341(1–2):1–15.

    Article  CAS  PubMed  Google Scholar 

  45. Hoffman DI, Klove K, Lobo RA. The prevalence and significance of elevated dehydroepiandrosterone sulfate levels in anovulatory women. Fertil Steril. 1984;42(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  46. Steinberger E, Smith KD, Rodriguez-Rigau LJ. Testosterone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate in hyperandrogenic women. J Clin Endocrinol Metab. 1984;59(3):471–7.

    Article  CAS  PubMed  Google Scholar 

  47. Longcope C. Adrenal and gonadal androgen secretion in normal females. Clin Endocrinol Metab. 1986;15(2):213–28.

    Article  CAS  PubMed  Google Scholar 

  48. Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17(1):17–33.

    Article  PubMed  Google Scholar 

  49. Naver KV. Increased risk of preterm delivery and pre-eclampsia in women with polycystic ovary syndrome and hyperandrogenaemia. BJOG. 2014;121(5):575–81.

    Article  CAS  PubMed  Google Scholar 

  50. Rachoń D, Teede H. Ovarian function and obesity–interrelationship, impact on women’s reproductive lifespan and treatment options. Mol Cell Endocrinol. 2010;316(2):172–9.

    Article  PubMed  Google Scholar 

  51. Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 2020;35:100937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Escobar-Morreale HF, San Millán JL. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol Metab. 2007;18(7):266–72.

    Article  CAS  PubMed  Google Scholar 

  53. Cena H, Chiovato L, Nappi RE. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J Clin Endocrinol Metab. 2020;105(8):e2695–709.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This systematic review and meta-analysis did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongzhi Yuan or Linlin Yu.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Supplementary file2 (PDF 5405 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, Z., Kong, L. et al. Effect of SGLT2 Inhibitors on Improving Glucolipid Metabolism and Reproductive Hormone Status in Overweight/Obese Women with PCOS: A Systematic Review and Meta-Analysis. Reprod. Sci. (2023). https://doi.org/10.1007/s43032-023-01415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-023-01415-5

Keywords

Navigation