Skip to main content
Log in

Serum-Derived Exosomal microRNAs in Lipid Metabolism in Polycystic Ovary Syndrome

  • General Gynecology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The crosstalk between obesity and insulin resistance (IR) in polycystic ovary syndrome (PCOS) may be related to miRNA regulation secreted by exosomes. However, the underlying mechanism remains to be explored. A model of PCOS with IR was constructed in mice with dehydroepiandrosterone (DHEA) and a high-fat diet (HFD). Serum exosomes were extracted and characterized using transmission electron microscopy (TEM) and western blot analysis (for CD9, CD63, and CD81). The expression of miR-20b-5p and miR-106a-5p in serum exosomes was detected by qRT-PCR. The effects of serum exosomal miR-20b-5p and miR-106a-5p on lipid metabolism and ovary histological structure in PCOS model with IR were also explored. Serum exosomal miR-20b-5p and miR-106a-5p overexpression could inhibit adipocyte differentiation in 3T3-L1 cells with IR and PCOS mice model. Furthermore, the predicted targets of miR-20b-5p and miR-106a-5p were also analyzed with bioinformatics. In DHEA + HFD serum-derived exosomes, the miR-20b-5p and miR-106a-5p levels were markedly decreased. Overexpression of miR-20b-5p and miR-106a-5p alleviated adipocyte differentiation–related genes and triglyceride content in 3T3-L1 cells and liver steatosis in mice. Bioinformatics analysis of miR-20b-5p and miR-106a-5p predicted targets indicated that miR-20b-5p and miR-106a-5p were highly related to lipid metabolism. Serum-derived exosome miR-20b-5p and miR-106a-5p inhibited adipocyte differentiation during the process of PCOS with IR, which might be a novel therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available from the corresponding author upon request.

Code Availability

Not applicable.

References

  1. Hoeger KM, Dokras A, Piltonen T. Update on PCOS: consequences, challenges, and guiding treatment. J Clin Endocrinol Metab. 2021;106:e1071–83.

    Article  Google Scholar 

  2. Group REASPCW. Revised. consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2003;2004(19):41–7.

    Google Scholar 

  3. Balen AH, Morley LC, Misso M, et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum Reprod Update. 2016;22:687–708. https://doi.org/10.1093/humupd/dmw025.

    Article  PubMed  Google Scholar 

  4. Azziz R. Polycystic Ovary Syndrome. Obstet Gynecol. 2018;132:321–36. https://doi.org/10.1097/AOG.0000000000002698.

    Article  PubMed  Google Scholar 

  5. De Groot PC, Dekkers OM, Romijn JA, et al. PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis. Hum Reprod Update. 2011;17:495–500.

    Article  Google Scholar 

  6. Chen L, Xu WM, Zhang D. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome. Fertil Steril. 2014;102(1167–1174):e1164.

    Google Scholar 

  7. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14. https://doi.org/10.1016/j.addr.2015.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126:1208–15. https://doi.org/10.1172/JCI81135.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pullan JE, Confeld MI, Osborn JK, et al. Exosomes as drug carriers for cancer therapy. Mol Pharm. 2019;16:1789–98. https://doi.org/10.1021/acs.molpharmaceut.9b00104.

    Article  CAS  PubMed  Google Scholar 

  10. Yuan D, Luo J, Sun Y, et al. PCOS follicular fluid derived exosomal miR-424–5p induces granulosa cells senescence by targeting CDCA4 expression. Cell Signal. 2021;85:110030. https://doi.org/10.1016/j.cellsig.2021.110030.

    Article  CAS  PubMed  Google Scholar 

  11. Che X, Jian F, Chen C, et al. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J Mol Endocrinol. 2020;64:1–12.

    Article  CAS  Google Scholar 

  12. Jiang X, Li J, Zhang B, et al. Differential expression profile of plasma exosomal microRNAs in women with polycystic ovary syndrome. Fertil Steril. 2021;115:782–92. https://doi.org/10.1016/j.fertnstert.2020.08.019.

    Article  CAS  PubMed  Google Scholar 

  13. Moghetti P, Tosi F. Insulin resistance and PCOS: chicken or egg? J Endocrinol Invest. 2021;44:233–44.

    Article  CAS  Google Scholar 

  14. Li Y, Zhao W, Wang H, et al. Silencing of LncRNA steroid receptor RNA activator attenuates polycystic ovary syndrome in mice. Biochimie. 2019;157:48–56. https://doi.org/10.1016/j.biochi.2018.10.021.

    Article  CAS  PubMed  Google Scholar 

  15. Sun LF, Yang YL, Wang MY, et al. Inhibition of Col6a5 improve lipid metabolism disorder in dihydrotestosterone-induced hyperandrogenic mice. Front Cell Dev Biol. 2021;9:669189. https://doi.org/10.3389/fcell.2021.669189.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang C, Yu C, Lin Z, et al. MiRNAs expression profiling of rat ovaries displaying PCOS with insulin resistance. Arch Gynecol Obstet. 2020;302:1205–13. https://doi.org/10.1007/s00404-020-05730-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qin L, Chen J, Tang L, et al. Significant role of Dicer and miR-223 in adipose tissue of polycystic ovary syndrome patients. Biomed Res Int. 2019;2019:9193236. https://doi.org/10.1155/2019/9193236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS genetics. 2006;2:e88.

    Article  Google Scholar 

  19. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.

    Article  CAS  Google Scholar 

  20. Wang L, Fan H, Zou Y, et al. Aberrant Expression of long non-coding RNAs in exosomes in follicle fluid from PCOS patients. Front Genet. 2020;11:608178. https://doi.org/10.3389/fgene.2020.608178.

    Article  CAS  PubMed  Google Scholar 

  21. Carmina E, Lobo RA. Polycystic ovary syndrome (PCOS): arguably the most common endocrinopathy is associated with significant morbidity in women. J Clin Endocrinol Metab. 1999;84:1897–9.

    Article  CAS  Google Scholar 

  22. Diamanti-Kandarakis E, Papavassiliou AG, Kandarakis SA, et al. Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol Metab. 2007;18:280–5.

    Article  CAS  Google Scholar 

  23. Silfen ME, Denburg MR, Manibo AM, et al. Early endocrine, metabolic, and sonographic characteristics of polycystic ovary syndrome (PCOS): comparison between nonobese and obese adolescents. J Clin Endocrinol Metab. 2003;88:4682–8.

    Article  CAS  Google Scholar 

  24. Wang M, Zhao D, Xu L, et al. Role of PCSK9 in lipid metabolic disorders and ovarian dysfunction in polycystic ovary syndrome. Metabolism. 2019;94:47–58. https://doi.org/10.1016/j.metabol.2019.02.002.

    Article  CAS  PubMed  Google Scholar 

  25. Castano C, Kalko S, Novials A, et al. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci U S A. 2018;115:12158–63. https://doi.org/10.1073/pnas.1808855115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wild RA. Dyslipidemia in PCOS. Steroids. 2012;77:295–9.

    Article  CAS  Google Scholar 

  27. Purcell SH, Moley KH. The impact of obesity on egg quality. J Assist Reprod Genet. 2011;28:517–24.

    Article  Google Scholar 

  28. Zhang Y, Li C, Zhang W, et al. Decreased insulin resistance by myo-inositol is associated with suppressed interleukin 6/phospho-STAT3 signaling in a rat polycystic ovary syndrome model. J Med Food. 2020;23:375–87. https://doi.org/10.1089/jmf.2019.4580.

    Article  CAS  PubMed  Google Scholar 

  29. Wekker V, van Dammen L, Koning A, et al. Long-term cardiometabolic disease risk in women with PCOS: a systematic review and meta-analysis. Hum Reprod Update. 2020;26:942–60. https://doi.org/10.1093/humupd/dmaa029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patel SS, Truong U, King M, et al. Obese adolescents with polycystic ovarian syndrome have elevated cardiovascular disease risk markers. Vasc Med. 2017;22:85–95. https://doi.org/10.1177/1358863X16682107.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krishnan A, Muthusami S. Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol. 2017;232:R99–113. https://doi.org/10.1530/JOE-16-0405.

    Article  CAS  PubMed  Google Scholar 

  32. Ajmal N, Khan SZ, Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: a review article. Eur J Obstet Gynecol Reprod Biol X. 2019;3:100060. https://doi.org/10.1016/j.eurox.2019.100060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Witchel SF, Oberfield SE, Pena AS. Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endocr Soc. 2019;3:1545–73. https://doi.org/10.1210/js.2019-00078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paz MM, Garcia NE, Semhan RV, et al. Study of lipid reserves in Liolaemus koslowskyi (Squamata: Liolaemidae): reproductive and ecological implications. J Comp Physiol B. 2019;189:595–609. https://doi.org/10.1007/s00360-019-01226-8.

    Article  PubMed  Google Scholar 

  35. Ferrer MJ, Silva AF, Abruzzese GA, et al. Lipid metabolism and relevant disorders to female reproductive health. Curr Med Chem. 2021;28:5625–47. https://doi.org/10.2174/0929867328666210106142912.

    Article  CAS  PubMed  Google Scholar 

  36. Athyros VG, Doumas M, Imprialos KP, et al. Diabetes and lipid metabolism. Hormones (Athens). 2018;17:61–7. https://doi.org/10.1007/s42000-018-0014-8.

    Article  Google Scholar 

  37. Li Y, Ma J, Yao K, et al. Circadian rhythms and obesity: timekeeping governs lipid metabolism. J Pineal Res. 2020;69:e12682. https://doi.org/10.1111/jpi.12682.

    Article  CAS  PubMed  Google Scholar 

  38. Hjerpsted JB, Flint A, Brooks A, et al. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes Metab. 2018;20:610–9. https://doi.org/10.1111/dom.13120.

    Article  CAS  PubMed  Google Scholar 

  39. Esfandyari S, Elkafas H, Chugh RM, et al. Exosomes as biomarkers for female reproductive diseases diagnosis and therapy. Int J Mol Sci 2021; 22 https://doi.org/10.3390/ijms22042165.

  40. Sun X, Ma X, Yang X, et al. Exosomes and female infertility. Curr Drug Metab. 2019;20:773–80. https://doi.org/10.2174/1389200220666191015155910.

    Article  CAS  PubMed  Google Scholar 

  41. Lian Y-k and Zhou W-d. Advances in the research of exosome and exosomal non-coding RNA in the pathogenesis, diagnosis and treatment of polycystic ovary syndrome. Acta Pharmaceutica Sinica 2020: 2256–2263.

  42. Wang L, Fan H, Zou Y, et al. Aberrant expression of long noncoding RNAs in exosomes in follicle fluid from PCOS patients. Front Genet. 2020;11:1822.

    Google Scholar 

  43. Zhao Y, Tao M, Wei M, et al. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). Artif Cells Nanomedicine Biotechnol. 2019;47:3804–13.

    Article  CAS  Google Scholar 

  44. Wu HL, Heneidi S, Chuang TY, et al. The expression of the miR-25/93/106b family of micro-RNAs in the adipose tissue of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2014;99:E2754-2761. https://doi.org/10.1210/jc.2013-4435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Youth Project of National Natural Science Foundation of China (grant number 81904237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Hong.

Ethics declarations

Ethics Approval

The protocol was approved by the Animal Ethics Committee, Affiliated Hospital of Nanjing University of Chinese Medicine.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Wu, J., Yu, S. et al. Serum-Derived Exosomal microRNAs in Lipid Metabolism in Polycystic Ovary Syndrome. Reprod. Sci. 29, 2625–2635 (2022). https://doi.org/10.1007/s43032-022-00930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00930-1

Keywords

Navigation