Skip to main content

Advertisement

Log in

Umbilical Cord Blood-Derived Exosomes in Maternal–Fetal Disease: a Review

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The nutrients and other factors transported by umbilical cord blood, which is vital for fetal survival, play crucial roles in fetal development. There are various communication modes between the fetal-placental system and the maternal-placental system, and these communication modes are all mediated by umbilical cord blood. During the process of umbilical cord blood transportation, the changes of some nutrients and factors may play a key role in fetal development. Exosomes, which are members of the extracellular vesicle family, are present in the umbilical cord blood and play roles in information transmission as a result of their efficient cellular communication activity. The study of umbilical cord blood-derived exosomes provides a new approach for research on the etiology of maternal–fetal diseases and they may be useful for the development of intrauterine treatments. This review summarizes specific functions and research directions regarding umbilical cord blood-derived exosomes, and their potential associations with pregnancy complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable

References

  1. Kyung Chul Yoon. Use of umbilical cord serum in ophthalmology. Chonnam Med J. 2014;50(3):82.

    Article  Google Scholar 

  2. Araújo JR, Keating E, Martel F. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Curr Diab Rep. 2015;15(1):1.

    Article  Google Scholar 

  3. Kaludjerovic J, Ward WE. The interplay between estrogen and fetal adrenal cortex. J Nutr Metab. 2012;2012:1–12.

    Article  Google Scholar 

  4. Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr Biol. 2018;28(8):R435–44.

    Article  CAS  Google Scholar 

  5. Baergen RN. Cord abnormalities, structural lesions, and cord “accidents.” Semin Diagn Pathol. 2007;24(1):23–32.

    Article  Google Scholar 

  6. Else LJ, Taylor S, Back DJ, Khoo SH. Review pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the fetal compartment (placenta and amniotic fluid). Antivir Ther. 2011;16(8):1139–47.

    Article  CAS  Google Scholar 

  7. Fernandez A, Chasovskyi K. The use of umbilical cord blood for autologous transfusion in neonatal open heart surgery. J Cardiothorac Vasc Anesth. 2020;34(2):483–8.

    Article  Google Scholar 

  8. McDonald CA, Penny TR, Paton MCB, et al. Effects of umbilical cord blood cells, and subtypes, to reduce neuroinflammation following perinatal hypoxic-ischemic brain injury. J Neuroinflammation. 2018;15(1):47.

    Article  Google Scholar 

  9. Jaing T-H. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine. Cell Transplant. 2014;23(4–5):493–6.

    Article  Google Scholar 

  10. Lee MW, Jang IK, Yoo KH, Sung KW, Koo HH. Stem and progenitor cells in human umbilical cord blood. Int J Hematol. 2010;92(1):45–51.

    Article  Google Scholar 

  11. Jiao Y, Li X-Y, Liu J. A new approach to cerebral palsy treatment: discussion of the effective components of umbilical cord blood and its mechanisms of action. Cell Transplant. 2019;28(5):497–509.

    Article  Google Scholar 

  12. Haller MJ, Wasserfall CH, McGrail KM, et al. Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care. 2009;32(11):2041–6.

    Article  Google Scholar 

  13. Sachdeva A, Gunasekaran V, Malhotra P, et al. Umbilical cord blood banking: consensus statement of the Indian Academy of Pediatrics. Indian Pediatr. 2018;55(6):489–94.

    Article  Google Scholar 

  14. Reslan OM, Khalil RA. Molecular and vascular targets in the pathogenesis and management of the hypertension associated with preeclampsia. Cardiovasc Hematol Agents Med Chem. 2010;8(4):204–26.

    Article  CAS  Google Scholar 

  15. Cai M, Lin Na, Lin Y, Huang H, Liangpu Xu. Evaluation of chromosomal abnormalities and copy number variations in late trimester pregnancy using cordocentesis. Aging (Albany NY). 2020;12(15):15556–65.

    Article  Google Scholar 

  16. Armstrong L, Stenson BJ. Use of umbilical cord blood gas analysis in the assessment of the newborn. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):430–4.

    Article  Google Scholar 

  17. Einikyte R, Snieckuviene V, Ramasauskaite D, et al. Taiwanese Journal of Obstetrics & Gynecology The comparison of umbilical cord arterial blood lactate and pH values for predicting short-term neonatal outcomes. Taiwan J Obstet Gynecol. 2017;56(6):745–9.

    Article  Google Scholar 

  18. Sogawa E, Kaji T, Nakayama S, et al. Seasonal variation of serum 25(OH) vitamin D levels in maternal and umbilical cord blood in Japanese women. J Med Invest. 2019;66(1.2):128–33.

    Article  Google Scholar 

  19. McCarthy JM, Capullari T, Thompson Z, Zhu Y, Spellacy WN. Umbilical cord nucleated red blood cell counts: normal values and the effect of labor. J Perinatol. 2006;26(2):89–92.

    Article  CAS  Google Scholar 

  20. Neda AN, Fahimeh S, Tahereh ZK, et al. Lead level in umbilical cord blood and its effects on newborns anthropometry. J Clin Diagn Res. 2017;11(6):SC01–4.

    Google Scholar 

  21. Ladele JI, Fajolu IB, Ezeaka VC. Determination of lead levels in maternal and umbilical cord blood at birth at the Lagos University Teaching Hospital, Lagos. PLoS One. 2019;14(2):e0211535.

    Article  CAS  Google Scholar 

  22. Duarte PO, Oshiro LM, Zimmermann NP, et al. Serological and molecular detection of Neospora caninum and Toxoplasma gondii in human umbilical cord blood and placental tissue samples. Sci Rep. 2020;10(1):9043.

    Article  CAS  Google Scholar 

  23. Liu J, Biao Xu, Chen T, et al. Presence of hepatitis B virus markers in umbilical cord blood: exposure to or infection with the virus? Dig Liver Dis. 2019;51(6):864–9.

    Article  Google Scholar 

  24. Deorari AK, Broor S, Maitreyi RS, et al. Incidence, clinical spectrum, and outcome of intrauterine infections in neonates. J Trop Pediatr. 2000;46(3):155–9.

    Article  CAS  Google Scholar 

  25. Zhu J, Xu Y, Zhang G, Wu M, Du L. Total serum bilirubin level in umbilical cord blood and respiratory distress syndrome in very low birth weight infants. J Perinat Med. 2012;40(1):91–5.

    Article  Google Scholar 

  26. Yao AC, Moinian M, Lind J. Distribution of blood between infant and placenta after birth. Lancet. 1969;2(7626):871–3.

    Article  CAS  Google Scholar 

  27. Dixon LR. The complete blood count: physiologic basis and clinical usage. J Perinat Neonatal Nurs. 1997;11(3):1–18.

    Article  CAS  Google Scholar 

  28. Orlando N, Pellegrino C, Valentini CG, et al. Umbilical cord blood: current uses for transfusion and regenerative medicine. Transfus Apher Sci. 2020;59(5):102952.

    Article  Google Scholar 

  29. Brune T, Garritsen H, Witteler R, et al. Autologous placental blood transfusion for the therapy of anaemic neonates. Biol Neonate. 2002;81(4):236–43.

    Article  Google Scholar 

  30. Khodabux CM, von Lindern JS, van Hilten JA, et al. A clinical study on the feasibility of autologous cord blood transfusion for anemia of prematurity. Transfusion. 2008;48(8):1634–43. https://doi.org/10.1111/j.1537-2995.2008.01747.x.

  31. Ahn SY, Chang YS, Sung DK, et al. Pivotal role of brain derived neurotrophic factor secreted by mesenchymal stem cells in severe intraventricular hemorrhage in the newborn rats. Cell Transplant. 2017;26(1):145–56.

    Article  Google Scholar 

  32. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5(1):121–43.

    Article  Google Scholar 

  33. Boruczkowski D, Pujal JM, Zdolińska-Malinowska I. Autologous cord blood in children with cerebral palsy: a review. Int J Mol Sci. 2019;20(10):2433.

    Article  Google Scholar 

  34. Carpenter KLH, Major S, Tallman C, et al. White matter tract changes associated with clinical improvement in an open-label trial assessing autologous umbilical cord blood for treatment of young children with autism. Stem Cells Transl Med. 2019;8(2):138–47.

    Article  Google Scholar 

  35. Sun JM, Grant GA, McLaughlin C, et al. Repeated autologous umbilical cord blood infusions are feasible and had no acute safety issues in young babies with congenital hydrocephalus. Pediatr Res. 2015;78(6):712–6.

    Article  Google Scholar 

  36. Paton MCB, Wall DA, Elwood N, et al. Safety of allogeneic umbilical cord blood infusions for the treatment of neurological conditions: a systematic review of clinical studies. Cytotherapy. 2022;24(1):2–9.

    Article  CAS  Google Scholar 

  37. Baumgartner LS, Moore E, Shook D, et al. Safety of autologous umbilical cord blood therapy for acquired sensorineural hearing loss in children. J Audiol Otol. 2018;22(4):209–22.

    Article  Google Scholar 

  38. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.

    Article  Google Scholar 

  39. Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107(2):102–8.

    Article  CAS  Google Scholar 

  40. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78(9):838–48.

    Article  CAS  Google Scholar 

  41. Février B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16(4):415–21.

    Article  Google Scholar 

  42. György B, Módos K, Pállinger É, et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011;117(4):e39-48.

    Article  Google Scholar 

  43. Salomon C, Kobayashi M, Ashman K, et al. Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes. PLoS One. 2013;8(11):e79636.

    Article  CAS  Google Scholar 

  44. Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, Yasar S, Dworacki G. Exosomes – structure, biogenesis and biological role in non small cell lung cancer. Scand J Immunol. 2015;81(1):2–10.

    Article  CAS  Google Scholar 

  45. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  Google Scholar 

  46. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208.

    Article  CAS  Google Scholar 

  47. Mitchell MD, Peiris HN, Kobayashi M, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015;213(4):S173–81.

    Article  CAS  Google Scholar 

  48. Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.

    Article  CAS  Google Scholar 

  49. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43–51.

    Article  CAS  Google Scholar 

  50. Torregrosa Paredes P, Gutzeit C, Johansson S, Admyre C, et al. Differences in exosome populations in human breast milk in relation to allergic sensitization and lifestyle. Allergy. 2014;69(4):463–71.

    Article  CAS  Google Scholar 

  51. Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87.

    Article  CAS  Google Scholar 

  52. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73.

    Article  CAS  Google Scholar 

  53. Gatti JL, Métayer S, Belghazi M, Dacheux F, Dacheux JL. Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol Reprod. 2005;72(6):1452–65.

    Article  CAS  Google Scholar 

  54. Keller S, Rupp C, Stoeck A, et al. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 2007;72(9):1095–102.

    Article  CAS  Google Scholar 

  55. Lässer C, Alikhani VS, Ekström K, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9:9.

    Article  Google Scholar 

  56. Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307.

    Article  CAS  Google Scholar 

  57. Lässer C, Eldh M, Lötvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012;(59):e3037. https://doi.org/10.3791/3037.

  58. Southcombe J, Tannetta D, Redman C, Sargent I. The immunomodulatory role of syncytiotrophoblast microvesicles. PLoS One. 2011;6(5):e20245.

    Article  CAS  Google Scholar 

  59. Taylor DD, Akyol S, Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of t cell signaling. J Immunol. 2006;176(3):1534–42.

    Article  CAS  Google Scholar 

  60. Miranda J, Paules C, Nair S, et al. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction - liquid biopsies to monitoring fetal growth. Placenta. 2018;64:34–43.

    Article  CAS  Google Scholar 

  61. Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013;22(6):845–54.

    Article  CAS  Google Scholar 

  62. Li X, Jiang C, Zhao J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function. J Diabetes Complicat. 2016;30(6):986–92.

    Article  Google Scholar 

  63. Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016;8:72–82.

    Article  Google Scholar 

  64. Nalamolu KR, Venkatesh I, Mohandass A, et al. Exosomes treatment mitigates ischemic brain damage but does not improve post-stroke neurological outcome. Cell Physiol Biochem. 2019;52(6):1280–91.

    Article  CAS  Google Scholar 

  65. Xie K, Liu L, Chen J, Liu F. Exosomes derived from human umbilical cord blood mesenchymal stem cells improve hepatic ischemia reperfusion injury via delivering miR-1246. Cell Cycle. 2019;18(24):3491–501.

    Article  CAS  Google Scholar 

  66. Burger D, Viñas JL, Akbari S, et al. Human endothelial colony-forming cells protect against acute kidney injury role of exosomes. Am J Pathol. 2015;185(8):2309–23.

    Article  CAS  Google Scholar 

  67. Gao W, Li F, Liu Li, et al. Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury. Exp Neurol. 2018;307:99–108.

    Article  CAS  Google Scholar 

  68. Than UTT, Le HT, Hoang DH, et al. Induction of antitumor immunity by exosomes isolated from cryopreserved cord blood monocyte-derived dendritic cells. Int J Mol Sci. 2020;21(5):1834.

    Article  CAS  Google Scholar 

  69. Guan S, Li Q, Liu P, Xuan X, Ying Du. Umbilical cord blood-derived dendritic cells loaded with BGC823 tumor antigens and DC-derived exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumor immunity in vitro and in vivo. Cent Eur J Immunol. 2014;39(2):142–51.

    Article  CAS  Google Scholar 

  70. Cho CS. Expression of concern for “Ex vivo experiments of human ovarian cancer ascites-derived exosomes presented by dendritic cells derived from umbilical cord blood for immunotherapy treatment.” Clin Med Insights Oncol. 2013;20(7):83.

    Google Scholar 

  71. Li X, Chen C, Wei L, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy. 2016;18(2):253–62.

    Article  CAS  Google Scholar 

  72. Kim Y-J, Yoo SM, Park HH, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem Biophys Res Commun. 2017;493(2):1102–8.

    Article  CAS  Google Scholar 

  73. Zhang J, Chen C, Bin Hu, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int J Biol Sci. 2016;12(12):1472–87.

    Article  CAS  Google Scholar 

  74. Cleys ER, Halleran JL, Mcwhorter E, et al. Identification of microRNAs in exosomes isolated from serum and umbilical cord blood, as well as placentomes of gestational day 90 pregnant sheep. Mol Reprod Dev. 2014;81(11):983–93.

    Article  CAS  Google Scholar 

  75. Luo J, Fan Y, Shen L, et al. The pro-angiogenesis of exosomes derived from umbilical cord blood of intrauterine growth restriction pigs was repressed associated with MiRNAs. Int J Biol Sci. 2018;14(11):1426–36.

    Article  CAS  Google Scholar 

  76. Cao M, Zhang L, Lin Y, et al. Differential mRNA and long noncoding RNA expression profiles in umbilical cord blood exosomes from gestational diabetes mellitus patients. DNA Cell Biol. 2020;39(11):1–12.

    Article  Google Scholar 

  77. Jia R, Li J, Rui C, et al. Comparative proteomic profile of the human umbilical cord blood exosomes between normal and preeclampsia pregnancies with high-resolution mass spectrometry. Cell Physiol Biochem. 2015;36(6):2299–306.

    Article  CAS  Google Scholar 

  78. Jin J, Menon R. Placental exosomes: a proxy to understand pregnancy complications. Am J Reprod Immunol. 2018;79(5):e12788.

    Article  Google Scholar 

  79. Jia L, Zhou X, Huang X, et al. Maternal and umbilical cord serum-derived exosomes enhance endothelial cell proliferation and migration. FASEB J. 2018;32(8):4534–43.

    Article  CAS  Google Scholar 

  80. Yin Hu, Rao S-S, Wang Z-X, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics. 2018;8(1):169–84.

    Article  Google Scholar 

  81. Lee TH, D’Asti E, Magnus N, et al. Microvesicles as mediators of intercellular communication in cancer — the emerging science of cellular ‘ debris.’ Semin Immunopathol. 2011;33(5):455–67.

    Article  Google Scholar 

  82. Cao M, Zhang L, Lin Y, et al. Circular RNA expression profiles in umbilical cord blood exosomes from normal and gestational diabetes mellitus patients. Biosci Rep. 2020;40(11):1–11.

    Article  Google Scholar 

  83. Xueya Z, Yamei L, Sha C, et al. Exosomal encapsulation of miR-125a-5p inhibited trophoblast cell migration and proliferation by regulating the expression of VEGFA in preeclampsia. Biochem Biophys Res Commun. 2020;525(3):646–53.

    Article  Google Scholar 

  84. Lee ACC, Katz J, Blencowe H, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health. 2013;1(1):e26-36.

    Article  Google Scholar 

  85. Unterscheider J, Daly S, Geary MP, et al. Optimizing the definition of intrauterine growth restriction : the multicenter prospective PORTO Study. Am J Obstet Gynecol. 2013;208(4):290.e1-6.

    Article  Google Scholar 

  86. Hui L, Challis D. Diagnosis and management of fetal growth restriction: the role of fetal therapy. Best Pract Res Clin Obstet Gynaecol. 2008;22(1):139–58.

    Article  Google Scholar 

  87. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics and the Society for Maternal-Fetal Medicine. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet Gynecol. 2019;133(2):e97–109. https://doi.org/10.1097/AOG.0000000000003070.

  88. Chen C-P, Bajoria R, Aplin JD. Decreased vascularization and cell proliferation in placentas of intrauterine growth – restricted fetuses with abnormal umbilical artery flow velocity waveforms. Am J Obstet Gynecol. 2002;187(3):764–9.

    Article  Google Scholar 

  89. Mayhew TM, Ohadike C, Baker PN, et al. Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth. Placenta. 2003;24(2–3):219–26.

    Article  CAS  Google Scholar 

  90. McGowan JE, Alderdice FA, Holmes VA, Johnston L. Early childhood development of late-preterm infants: a systematic review. Pediatrics. 2011;127(6):1111–24.

    Article  Google Scholar 

  91. Baschat AA. Pathophysiology of fetal growth restriction: implications for diagnosis and surveillance. Obstet Gynecol Surv. 2004;59(8):617–27.

    Article  Google Scholar 

  92. Bernstein IM, Horbar JD, Badger GJ, Ohlsson A, Golan A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. Am J Obstet Gynecol. 2000;182(1 Pt 1):198–206.

    Article  CAS  Google Scholar 

  93. Kautzky-Willer A, Harreiter J, Winhofer-Stöckl Y, Weitgasser R, Lechleitner M. Wien Klin Wochenschr. Clinical practice recommendations for diabetes in pregnancy (Update 2019). 2019;131(Suppl 1):103–9. https://doi.org/10.1007/s00508-019-1456-y.

  94. Inoue S, Kozuma Y, Miyahara M, et al. Pathophysiology of gestational diabetes mellitus in lean Japanese pregnant women in relation to insulin secretion or insulin resistance. Diabetol Int. 2020;11(3):269–73.

    Article  Google Scholar 

  95. Herath MP, Beckett JM, Hills AP, Byrne NM, Ahuja KDK. Gestational diabetes mellitus and infant adiposity at birth: a systematic review and meta-analysis of therapeutic interventions. J Clin Med. 2021;10(4):835.

    Article  CAS  Google Scholar 

  96. North RA, McCowan LM, Dekker GA, et al. Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. BMJ. 2011;342:d1875.

    Article  Google Scholar 

  97. Escudero CA, Herlitz K, Troncoso F, et al. Role of extracellular vesicles and microRNAs on dysfunctional angiogenesis during preeclamptic pregnancies. Front Physiol. 2016;18(7):98.

    Google Scholar 

  98. Shomer E, Katzenell S, Zipori Y, et al. Preeclampsia microvesicles of women with gestational hypertension and preeclampsia affect human trophoblast fate and endothelial function. Hypertension. 2013;62(5):893–8.

    Article  CAS  Google Scholar 

  99. Lee SM, Romero R, Lee YJ, et al. Systemic inflammatory stimulation by microparticles derived from hypoxic trophoblast as a model for inflammatory response in preeclampsia. Am J Obstet Gynecol. 2012;207(4):337.e1-8.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of China (No. 81300492) and prenatal diagnosis, intrauterine intervention, and prognosis evaluation of complicated twins (No. 2018YFC1002902).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Jingyi Liu and Quan Na

Administrative support: Jingyi Liu and Wei Sun

Provision of study materials or patients: Jingyi Liu and Caixia Liu

Collection and assembly of data: Quan Na and Caixia Liu

Data analysis and interpretation: Wei Sun and Quan Na

Manuscript writing: all authors

Final approval of manuscript: all authors

Corresponding author

Correspondence to Quan Na.

Ethics declarations

Ethics Approval

This article is a review. No animal or human experiment was carried out in this study.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Sun, W., Liu, C. et al. Umbilical Cord Blood-Derived Exosomes in Maternal–Fetal Disease: a Review. Reprod. Sci. 30, 54–61 (2023). https://doi.org/10.1007/s43032-022-00879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00879-1

Keywords

Navigation