Skip to main content
Log in

Epigenetic Regulation of Interleukin-17-Related Genes and Their Potential Roles in Neutrophil Vascular Infiltration in Preeclampsia

  • Pregnancy: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

DNA methylation is an epigenetic mechanism controlling gene expression, and reduced methylation is associated with increased gene expression. We hypothesized that IL-17 cytokines are regulated by DNA methylation, are elevated in the circulation of preeclamptic women, and stimulate vascular neutrophil chemokine expression, which could account for vascular infiltration of neutrophils in preeclampsia. We found significantly reduced DNA methylation of IL17A, IL17E, and IL17F genes in omental arteries of preeclamptic women, significantly reduced methylation of IL2, which regulates IL-17-producing T-lymphocytes, and significantly reduced methylation of genes encoding neutrophil chemokines and TNFα receptors related to lymphocyte function. Maternal plasma levels of IL-17A were significantly elevated in the second trimester of preeclamptic pregnancy as compared to normal pregnancy. To test if methylation regulates IL-17 cytokines, a lymphocyte cell line (Jurkat) was cultured with a hypomethylating agent. Hypomethylation increased expression of IL17E (aka IL25), IL17F, and IL2. IL17A was not expressed by Jurkat cells. To test the potential role of IL-17 cytokines in vascular neutrophil infiltration associated with preeclampsia, human vascular smooth muscle cells were cultured with IL-17 cytokines. IL-17A, but not IL-17E or IL-17F, increased gene expression of neutrophil chemokines (IL-8, CXCL5, and CXCL6) that are increased in vascular smooth muscle of preeclamptic women. The monocyte chemokine, CCL-2, was not increased. TNFα also increased neutrophil chemokines. IL-17 cytokines are regulated by DNA methylation; IL-17A is elevated in preeclampsia and stimulates expression of neutrophil chemokines in vascular smooth muscle. IL-17A could be responsible for vascular infiltration of neutrophils in preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable

Code availability

Not applicable

References

  1. Cunningham FG, Gant NF, Leveno KJ, Gilstrap LC III, Hauth JC, Wenstrom KD. Williams Obstetrics. 21th ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  2. Barden A, Graham D, Beilin LJ, Ritchie J, Baker R, Walters BN, et al. Neutrophil CD11B expression and neutrophil activation in pre-eclampsia. Clin Sci. 1997;92:37–44.

    Article  CAS  Google Scholar 

  3. Gervasi MT, Chaiworapongsa T, Pacora P, Naccasha N, Yoon BH, Maymon E, et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am J Obstet Gynecol. 2001;185(4):792–7.

    Article  CAS  Google Scholar 

  4. Greer IA, Haddad NG, Dawes J, Johnstone FD, Calder AA. Neutrophil activation in pregnancy-induced hypertension. Br J Obstet Gynaecol. 1989;96:978–82.

    Article  CAS  Google Scholar 

  5. Sacks GP, Studena K, Sargent K, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol. 1998;179(1):80–6.

    Article  CAS  Google Scholar 

  6. Tsukimori K, Maeda H, Ishida K, Nagata H, Koyanagi T, Nakano H. The superoxide generation of neutrophils in normal and preeclamptic pregnancies. Obstet Gynecol. 1993;81:536–40.

    CAS  PubMed  Google Scholar 

  7. Cadden KA, Walsh SW. Neutrophils, but not lymphocytes or monocytes, infiltrate maternal systemic vasculature in women with preeclampsia. Hypertens Pregnancy. 2008;27(4):396–405.

    Article  CAS  Google Scholar 

  8. Leik CE, Walsh SW. Neutrophils infiltrate resistance-sized vessels of subcutaneous fat in women with preeclampsia. Hypertension. 2004;44(1):72–7.

    Article  CAS  Google Scholar 

  9. Mishra N, Nugent WH, Mahavadi S, Walsh SW. Mechanisms of enhanced vascular reactivity in preeclampsia. Hypertension. 2011;58(5):867–73. https://doi.org/10.1161/HYPERTENSIONAHA.111.176602 HYPERTENSIONAHA.111.176602 [pii].

    Article  CAS  PubMed  Google Scholar 

  10. Shah TJ, Walsh SW. Activation of NF-kappaB and expression of COX-2 in association with neutrophil infiltration in systemic vascular tissue of women with preeclampsia. Am J Obstet Gynecol. 2007;196(1):48.e1–8.

    Article  Google Scholar 

  11. Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, Kolarz B, Rolinski J, Leszczynska-Gorzelak B, et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol. 2012;93(2):75–81. https://doi.org/10.1016/j.jri.2012.01.006 S0165-0378(12)00029-0.

    Article  CAS  PubMed  Google Scholar 

  12. Toldi G, Rigo J Jr, Stenczer B, Vasarhelyi B, Molvarec A. Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am J Reprod Immunol. 2011;66(3):223–9. https://doi.org/10.1111/j.1600-0897.2011.00987.x.

    Article  CAS  PubMed  Google Scholar 

  13. Dhillion P, Wallace K, Herse F, Scott J, Wallukat G, Heath J, et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Phys Regul Integr Comp Phys. 2012;303(4):R353–8. https://doi.org/10.1152/ajpregu.00051.2012 ajpregu.00051.2012 [pii].

    Article  CAS  Google Scholar 

  14. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55(2):500–7. https://doi.org/10.1161/HYPERTENSIONAHA.109.145094.

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen H, Chiasson VL, Chatterjee P, Kopriva SE, Young KJ, Mitchell BM. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res. 2013. https://doi.org/10.1093/cvr/cvs422.

  16. Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. 2002;71(1):1–8.

    CAS  PubMed  Google Scholar 

  17. Lee J, Ho WH, Maruoka M, Corpuz RT, Baldwin DT, Foster JS, et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem. 2001;276(2):1660–4. https://doi.org/10.1074/jbc.M008289200 M008289200 [pii].

    Article  CAS  PubMed  Google Scholar 

  18. Veenstra van Nieuwenhoven AL, Bouman A, Moes H, Heineman MJ, de Leij LF, Santema J, et al. Cytokine production in natural killer cells and lymphocytes in pregnant women compared with women in the follicular phase of the ovarian cycle. Fertil Steril. 2002;77(5):1032–7.

    Article  Google Scholar 

  19. Lurie S, Frenkel E, Tuvbin Y. Comparison of the differential distribution of leukocytes in preeclampsia versus uncomplicated pregnancy. Gynecol Obstet Investig. 1998;45(4):229–31.

    Article  CAS  Google Scholar 

  20. Mousa AA, Archer KJ, Cappello R, Estrada-Gutierrez G, Isaacs CR, Strauss JF 3rd, et al. DNA methylation is altered in maternal blood vessels of women with preeclampsia. Reprod Sci. 2012;19(12):1332–42. 1933719112450336 [pii]. https://doi.org/10.1177/1933719112450336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mousa AA, Cappello RE, Estrada-Gutierrez G, Shukla J, Romero R, Strauss JF 3rd, et al. Preeclampsia is associated with alterations in DNA methylation of genes involved in collagen metabolism. Am J Pathol. 2012;181(4):1455–63. S0002-9440(12)00494-4 [pii]. https://doi.org/10.1016/j.ajpath.2012.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mousa AA, Strauss JF 3rd, Walsh SW. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia. Hypertension. 2012;59(6):1249–55. HYPERTENSIONAHA.111.188730 [pii]. https://doi.org/10.1161/HYPERTENSIONAHA.111.188730.

    Article  CAS  PubMed  Google Scholar 

  23. Dunning MJ, Smith ML, Ritchie ME, Tavare S. beadarray: R classes and methods for Illumina bead-based data. Bioinformatics. 2007;23(16):2183–4. doi:btm311 [pii]. https://doi.org/10.1093/bioinformatics/btm311.

    Article  CAS  PubMed  Google Scholar 

  24. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–5. https://doi.org/10.1073/pnas.1530509100 1530509100 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kendrew JC, editor. The encyclopedia of molecular biology. Cambridge: Blackwell Science; 1994.

    Google Scholar 

  26. Leik CE, Willey A, Graham MF, Walsh SW. Isolation and culture of arterial smooth muscle cells from human placenta. Hypertension. 2004;43(4):837–40.

    Article  CAS  Google Scholar 

  27. Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338(7):436–45.

    Article  CAS  Google Scholar 

  28. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001;2(2):123–8. https://doi.org/10.1038/84219.

    Article  CAS  PubMed  Google Scholar 

  29. Walsh SW, Nugent WH, Al Dulaimi M, Washington SL, Dacha P, Strauss JF 3rd. Proteases activate pregnancy neutrophils by a protease-activated receptor 1 pathway: epigenetic implications for preeclampsia. Reprod Sci. 2020;27(11):2115–27. https://doi.org/10.1007/s43032-020-00232-4.

    Article  CAS  PubMed  Google Scholar 

  30. Walsh SW, Nugent WH, Alam SMK, Washington SL, Teves M, Jefferson KK, et al. Protease amplification of the inflammatory response induced by commensal bacteria: implications for racial disparity in term and preterm birth. Reprod Sci. 2020;27(1):246–59. https://doi.org/10.1007/s43032-019-00011-w.

    Article  CAS  PubMed  Google Scholar 

  31. Kupferminc MJ, Peaceman AM, Aderka D, Wallach D, Socol ML. Soluble tumor necrosis factor receptors and interleukin-6 levels in patients with severe preeclampsia. Obstet Gynecol. 1996;88:420–7.

    Article  CAS  Google Scholar 

  32. Sibai B, Romero R, Klebanoff MA, Rice MM, Caritis S, Lindheimer MD, et al. Maternal plasma concentrations of the soluble tumor necrosis factor receptor 2 are increased prior to the diagnosis of preeclampsia. Am J Obstet Gynecol. 2009;200(6):630 e1–8. S0002-9378(09)00091-X [pii]. https://doi.org/10.1016/j.ajog.2009.01.033.

    Article  CAS  Google Scholar 

  33. Conrad KP, Miles TM, Benyo DF. Circulating levels of immunoreactive cytokines in women with preeclampsia. Am J Reprod Immunol. 1998;40(2):102–11.

    Article  CAS  Google Scholar 

  34. Ferguson KK, Meeker JD, McElrath TF, Mukherjee B, Cantonwine DE. Repeated measures of inflammation and oxidative stress biomarkers in preeclamptic and normotensive pregnancies. Am J Obstet Gynecol. 2017;216(5):527.e1–9. https://doi.org/10.1016/j.ajog.2016.12.174.

    Article  CAS  Google Scholar 

  35. Kupferminc MJ, Peaceman AM, Wigton TR, Rehnberg KA, Socol ML. Tumor necrosis factor-a is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol. 1994;170:1752–9.

    Article  CAS  Google Scholar 

  36. Hayashi M, Hamada Y, Ohkura T. Elevation of granulocyte-macrophage colony-stimulating factor in the placenta and blood in preeclampsia. Am J Obstet Gynecol. 2004;190(2):456–61.

    Article  CAS  Google Scholar 

  37. Matsubara K, Ochi H, Kitagawa H, Yamanaka K, Kusanagi Y, Ito M. Concentrations of serum granulocyte-colony-stimulating factor in normal pregnancy and preeclampsia. Hypertens Pregnancy. 1999;18(1):95–106. https://doi.org/10.3109/10641959909009614.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) grants 5R01 HD088386 (SWW), 1U01 HD087198 (SWW), and by the National Heart, Lung and Blood Institute (NHLBI) R01 HL069851 (SWW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Walsh.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Office of Research Subjects Protection of Virginia Commonwealth University (HM20009145, HM20005160).

Consent to participate

Each patient from whom samples were obtained signed a consent form indicating they consented to participate in this research study.

Consent for publication

In the consent form, patients were informed that their data will be shared in summarized form grouped with other patients in published papers.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, S.W., Nugent, W.H., Archer, K.J. et al. Epigenetic Regulation of Interleukin-17-Related Genes and Their Potential Roles in Neutrophil Vascular Infiltration in Preeclampsia. Reprod. Sci. 29, 154–162 (2022). https://doi.org/10.1007/s43032-021-00605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00605-3

Keywords

Navigation