Skip to main content
Log in

Expression and DNA Methylation Status of the Imprinted Genes PEG10 and L3MBTL1 in the Umbilical Cord Blood and Placenta of the Offspring of Assisted Reproductive Technology

  • Genetics: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the expression and DNA methylation status of the imprinted genes PEG10 and L3MBTL1 in the offspring of assisted reproductive technology (ART). The ART group consists of 30 cases of placenta and umbilical cord blood from ART full-term, uncomplicated singleton pregnancy progeny, and the normal control group consists of 30 cases of placenta and umbilical cord blood from natural full-term, uncomplicated singleton pregnancy progeny. The imprinted genes PEG10 and L3MBTL1 are analyzed, and the expression and methylation status of the two genes are detected using real-time quantitative polymerase chain reaction (QRT-PCR), immunohistochemistry (IHC), Western blotting (WB), and methylation-specific polymerase chain reaction (MSP). Compared with the normal control group, the PEG10 mRNA relative quantity (RQ) value in the placenta is 0.994 ± 0.458, with its RQ value up-regulated (P = 0.015). The PEG10 mRNA RQ value in the umbilical cord blood is 0.875 ± 0.452, with its RQ value up-regulated (P = 0.002). However, the L3MBTL1 mRNA RQ value in the placenta is 0.404 ± 0.234, with its RQ value down-regulated (P = 0.024). The L3MBTL1 mRNA RQ value in the umbilical cord blood is 0.337 ± 0.213, and there is no difference in the umbilical cord blood (P = 0.081). Compared with the normal control group, the expression of PEGl0 protein in the placenta of the ART progeny is up-regulated (P = 0.000), while the expression of L3MBTLl protein is down-regulated (P = 0.000). The methylation status of the PEGl0 promoter region in the placenta in the ART group is lower than that in the normal control group (P = 0.037), and that of the promoter region of the umbilical cord blood is lower than that of the natural pregnancy group (P = 0.032). The methylation status of the L3MBTLl promoter region is higher in the placenta than in the normal control group (P = 0.038), and there is no difference between the two groups in the umbilical cord blood (P = 0.301). In the ART group, the values of PEGl0 and L3MBTLl RQ in the placenta and the umbilical cord blood of the hypermethylated group are lower than in those of the hypomethylated group. ART may increase the risk of the abnormal expression of PEG10 and L3MBTL1 in offspring imprinted genes. The methylation of the promoter region may be the mechanism that regulates the expression of PEGl0 and L3MBTL1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care. Fertil Steril. 2017;108(03):393–406.

    Article  Google Scholar 

  2. Qin J, Sheng X, Wu D, Gao S, You Y, Yang T, et al. Adverse obstetric outcomes associated with in vitro fertilization in singleton pregnancies: a prospective cohort study. Reprod Sci. 2017;24(4):595–608.

    Article  Google Scholar 

  3. Qin JB, Sheng XQ, Wu D, Gao SY, You YP, Yang TB, et al. Worldwide prevalence of adverse pregnancy outcomes among singleton pregnancies after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Arch Gynecol Obstet. 2017;295(2):285–301.

    Article  CAS  Google Scholar 

  4. Holsen LM, Savage CR, Martin LE, Bruce AS, Lepping RJ, Ko E, et al. Importance of reward and prefrontal circuitry in hunger and satiety: Prader–Willi syndrome vs simple obesity. Int J Obes. 2012;36(5):638–47.

    Article  CAS  Google Scholar 

  5. Vannuccini S, Clifton V, Fraser I, et al. Infertility and reproductive disorders: impact of hormonal and inflammatory mechanisms on pregnancy outcome. Hum Reprod Update. 2016;22(1):104–15.

    Article  CAS  Google Scholar 

  6. Kouhkan A, Khamseh ME, Pirjani R, Moini A, Arabipoor A, Maroufizadeh S, et al. Obstetric and perinatal outcomes of singleton pregnancies conceived via assisted reproductive technology complicated by gestational diabetes mellitus: a prospective cohort study. BMC Pregnancy Childbirth. 2018;18(1):495.

    Article  CAS  Google Scholar 

  7. Okun N, Sierra S. Pregnancy outcomes after assisted human reproduction. J Obstet Gynaecol Can. 2014;36(1):64–83.

    Article  Google Scholar 

  8. Li Y, Ley SH, Tobias DK, et al. Birth weight and later life adherence to unhealthy lifestyles in predicting type 2 diabetes: prospective cohort study. BMJ. 2015;351:h3672.

    Article  Google Scholar 

  9. Robinson R. The fetal origins of adult disease. Semin Fetal Neonatal Med. 2011;41(6):158–76.

    Google Scholar 

  10. Wang KCW, Botting KJ, Padhee M, et al. Early origins of heart disease: low birth weight and the role of the insulin-like growth factor system in cardiac hypertrophy. Clin Exp Pharmacol Physiol. 2012;39(11):362–74.

    Article  Google Scholar 

  11. Sehgal A, Murthi P. Vascular changes in fetal growth restriction: clinical relevance and future therapeutics. J Perinatol. 2019;39(3):366–74.

    Article  Google Scholar 

  12. Devaskar SU, Chu A. Intrauterine growth restriction: hungry for an answer. Physiology. 2016;31(2):131–46.

    Article  CAS  Google Scholar 

  13. Huang H, Chen X, Yang X, Huang Y. Diseases of offspring conceived by assisted reproductive technology and epigenetics. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2015;32(4):567–71.

    CAS  PubMed  Google Scholar 

  14. Hiura H, Okae H, Miyauchi N, Sato F, Sato A, van de Pette M, et al. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum Reprod. 2012;27(8):2541–8.

    Article  CAS  Google Scholar 

  15. Tenorio J, Romanelli V, Martin-Trujillo A, Fernández GM, Segovia M, Perandones C, et al. Clinical and molecular analyses of Beckwith-Wiedemann syndrome: comparison between spontaneous conception and assisted reproduction techniques. Am J Med Genet A. 2016;170(10):2740–9.

    Article  CAS  Google Scholar 

  16. Mussa A, Molinatto C, Cerrato F, et al. Assisted reproductive techniques and risk of Beckwith-Wiedemann syndrome. Pediatrics. 2017;140(1):e2016–4311.

    Article  Google Scholar 

  17. Cortessis VK, Azadian M, Buxbaum J, Sanogo F, Song AY, Sriprasert I, et al. Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J Assist Reprod Genet. 2018;35(6):943–52.

    Article  Google Scholar 

  18. Hattori H, Hiura H, Kitamura A, Miyauchi N, Kobayashi N, Takahashi S, et al. Association of four imprinting disorders and ART. Clin Epigenetics. 2019;11(1):21.

    Article  Google Scholar 

  19. Hoorsan H, Mirmiran P, Chaichian S, Moradi Y, Hoorsan R, Jesmi F. Congenital malformations in infants of mothers undergoing assisted reproductive technologies: a systematic review and meta-analysis study. J Prev Med Public Health. 2017;50(6):347–60.

    Article  Google Scholar 

  20. Marchesi DE, Qiao J, Feng HL. Embryo manipulation and imprinting. Semin Reprod Med. 2012;30(4):323–34.

    Article  CAS  Google Scholar 

  21. Hiura H, Okae H, Chiba H, Miyauchi N, Sato F, Sato A, et al. Imprinting methylation errors in ART. Reprod Med Biol. 2014;13(4):193–202.

    Article  CAS  Google Scholar 

  22. Uyar A, Seli E. The impact of assisted reproductive technologies on genomic imprinting and imprinting disorders. Curr Opin Obstet Gynecol. 2014;26(3):210–21.

    Article  Google Scholar 

  23. Park CH, Uh KJ, Mulligan BP, Jeung EB, Hyun SH, Shin T, et al. Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos. PLoS One. 2011;6(7):e22216.

    Article  CAS  Google Scholar 

  24. Henke C, Ruebner M, Faschingbauer F, Stolt CC, Schaefer N, Lang N, et al. Regulation of murine placentogenesis by the retroviral genes Syncytin-A, Syncytin-B and Peg10. Differentiation. 2013;85(4–5):150–60.

    Article  CAS  Google Scholar 

  25. Feng C, Tian S, Zhang Y, et al. General imprinting status is stable in assisted reproduction-conceived offspring. Fertil Steril. 2011;96(6):1417–1423.e9.

    Article  CAS  Google Scholar 

  26. Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur JG, et al. Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics. 2009;4(4):235–40.

    Article  CAS  Google Scholar 

  27. Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 2006;38(1):101–6.

    Article  CAS  Google Scholar 

  28. Lim AL, Ng S, Leow SC, et al. Epigenetic state and expression of imprinted genes in umbilical cord correlates with growth parameters in human pregnancy. J Med Genet. 2012;49(11):689–97.

    Article  CAS  Google Scholar 

  29. Luke B, Gopal D, Cabral H, et al. Pregnancy, birth, and infant outcomes by maternal fertility status: the Massachusetts Outcomes Study of Assisted Reproductive Technology. Am J Obstet Gynecol. 2017;217(3):327.e1–327.e14.

    Article  Google Scholar 

  30. Sunderam S, Kissin DM, Zhang Y, et al. Assisted reproductive technology surveillance - United States. MMWR Surveill Summ. 2018;67(3):1–28.

    Article  Google Scholar 

  31. Kondapalli LA, Perales-Puchalt A. Low birth weight: is it related to assisted reproductive technology or underlying infertility? Fertil Steril. 2013;99(2):303–10.

    Article  Google Scholar 

  32. Boccuni P, Macgrogan D, Scandura JM, et al. The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem. 2003;278(17):15412–20.

    Article  CAS  Google Scholar 

  33. Zeng H, Irwin ML, Lu L, Risch H, Mayne S, Mu L, et al. Physical activity and breast cancer survival: an epigenetic link through reduced methylation of a tumor suppressor geneL3MBTL1. Breast Cancer Res Treat. 2012;133(1):127–35.

    Article  CAS  Google Scholar 

  34. Lu J, Periz G, Lu YN, Tang Q, Liu Y, Zhang T, et al. L3MBTL1 regulates ALS/FTD-associated proteotoxicity and quality control. Nat Neurosci. 2019;22(6):875–86.

    Article  CAS  Google Scholar 

  35. Fortier AL, Lopes FL, Darricarrère N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet. 2008;17(11):1653–65.

    Article  CAS  Google Scholar 

  36. Wang C, Xiao Y, Hu Z, Chen Y, Liu N, Hu G. PEG10 directly regulated by E2Fs might have a role in the development of hepatocellular carcinoma. FEBS Lett. 2008;582(18):2793–8.

    Article  CAS  Google Scholar 

  37. Zhan Q, Qi X, Wang N, le F, Mao L, Yang X, et al. Altered methylations of H19, Snrpn, Mest and Peg3 are reversible by developmental reprogramming in kidney tissue of ICSI-derived mice. Sci Rep. 2017;7(1):11936.

    Article  Google Scholar 

  38. Nelson SM, Lawlor DA. Predicting live birth, preterm delivery, and low birth weight in infants born from in vitro fertilization: a prospective study of 144, 018 treatment cycles. PLoS Med. 2011;8(1):e1000386.

  39. Vincent RN, Gooding LD, Louie K, et al. Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions. Fertil Steril. 2016;106(3):739–748.e3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-jun Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yx., Yue, Lf., Zhang, Jw. et al. Expression and DNA Methylation Status of the Imprinted Genes PEG10 and L3MBTL1 in the Umbilical Cord Blood and Placenta of the Offspring of Assisted Reproductive Technology. Reprod. Sci. 28, 1133–1141 (2021). https://doi.org/10.1007/s43032-020-00417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00417-x

Keywords

Navigation