Skip to main content
Log in

Melatonin Attenuates Peroxynitrite-Induced Meiosis Dysfunction in Porcine Oocytes

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

A high level of reactive oxygen species (ROS) is widely considered one of the major causes of oocyte quality decline. Peroxynitrite is known as a powerful oxidant, which could induce multiple physical diseases. Recently, emerging pieces of evidences indicate that melatonin effectively promotes the development of oocytes, although the specific work mechanism remains to be further clarified. In this study, it was shown that peroxynitrite increased the level of ROS in porcine oocytes, which induced the apoptosis of oocytes, thereby leading to the obstruction of spindle assembly, depolymerization of actin, and decrease of polar body expulsion. These negative effects contributed to the failure of meiosis and ultimately blocked the maturation of porcine oocytes. As expected, it was found that melatonin effectively removed the accumulated ROS in oocytes, preventing oocytes from peroxynitrite-induced oocyte maturation failure, which might provide a novel approach to improve female livestock reproduction and cure female infertility in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goud AP, Goud PT, Diamond MP, Abu-Soud HM. Nitric oxide delays oocyte aging. Biochemistry. 2005;44(34):11361–8. https://doi.org/10.1021/bi050711f.

    Article  PubMed  Google Scholar 

  2. Banerjee J, Shaeib F, Maitra D, Saed GM, Dai J, Diamond MP, et al. Peroxynitrite affects the cumulus cell defense of metaphase II mouse oocytes leading to disruption of the spindle structure in vitro. Fertil Steril. 2013;100(2):578–84 e1. https://doi.org/10.1016/j.fertnstert.2013.04.030.

    Article  CAS  PubMed  Google Scholar 

  3. Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med. 2008;44(7):1295–304. https://doi.org/10.1016/j.freeradbiomed.2007.11.014.

    Article  CAS  PubMed  Google Scholar 

  4. Shaeib F, Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Impact of hydrogen peroxide-driven Fenton reaction on mouse oocyte quality. Free Radic Biol Med. 2013;58:154–9. https://doi.org/10.1016/j.freeradbiomed.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  5. Beckman JS, Chen J, Ischiropoulos H, Crow JP. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994;233(233):229–40.

    Article  CAS  Google Scholar 

  6. Halliwell B. Free-radicals, reactive oxygen species and human-disease—a critical-evaluation with special reference to atherosclerosis. Br J Exp Pathol. 1990;70(6):737–57.

    Google Scholar 

  7. Radi R, Denicola A, Freeman BA. Peroxynitrite reactions with carbon dioxide-bicarbonate. Methods Enzymol. 1999;301:353–67.

    Article  CAS  Google Scholar 

  8. Dweik RA, Comhair SAA, Gaston B, Thunnissen FBJM, Farver C, Thomassen MJ, et al. NO chemical events in the human airway during the immediate and late antigen-induced asthmatic response. Proc Natl Acad Sci U S A. 2001;98(5):2622–7. https://doi.org/10.1073/pnas.051629498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Radi R. Radi RNitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003-4008. Proc Natl Acad Sci. 2004;101(12):4003–8.

    Article  CAS  Google Scholar 

  10. Quijano C, Alvarez B, Gatti RM, Augusto O, Radi R. Pathways of peroxynitrite oxidation of thiol groups. Biochem J. 1997;322(Pt 1):167–73. https://doi.org/10.1042/bj3220167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonini MG, Augusto O. Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. J Biol Chem. 2001;276(13):9749–54. https://doi.org/10.1074/jbc.M008456200.

    Article  CAS  PubMed  Google Scholar 

  12. Beckman J. Apparent hydroxyl radical production by peroxynitrite : implications for endothelial injury from nitric oxide and superoxide. Procnatlacadsciusa. 1990;87.

  13. Kennedy LJ, Moore K Jr, Caulfield JL, Tannenbaum SR, Dedon PC. Quantitation of 8-oxoguanine and strand breaks produced by four oxidizing agents. Chem Res Toxicol. 1997;10(4):386–92. https://doi.org/10.1021/tx960102w.

    Article  CAS  PubMed  Google Scholar 

  14. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991;266(7):4244–50.

    Article  CAS  Google Scholar 

  15. Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6(8):662–80. https://doi.org/10.1038/nrd2222.

    Article  CAS  PubMed  Google Scholar 

  16. Goud PT, Goud AP, Joshi N, Puscheck E, Diamond MP, Abu-Soud HM. Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. Fertil Steril. 2014;102(1):151–9 e5. https://doi.org/10.1016/j.fertnstert.2014.03.053.

    Article  CAS  PubMed  Google Scholar 

  17. Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015;59(4):403–19. https://doi.org/10.1111/jpi.12267.

    Article  CAS  PubMed  Google Scholar 

  18. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin LL. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253–78. https://doi.org/10.1111/jpi.12360.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang MQ, Lu YJ, Chen Y, Zhang Y, Xiong B. Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes. Redox Biol. 2020;28:UNSP 101327. https://doi.org/10.1016/j.redox.2019.101327.

    Article  CAS  Google Scholar 

  20. Cao Y, Shen M, Jiang Y, Sun SC, Liu H. Melatonin reduces oxidative damage in mouse granulosa cells via restraining JNK-dependent autophagy. Reproduction. 2018;155(3):307–19. https://doi.org/10.1530/REP-18-0002.

    Article  CAS  PubMed  Google Scholar 

  21. Woo MM, Tai CJ, Kang SK, Nathwani PS, Pang SF, Leung PC. Direct action of melatonin in human granulosa-luteal cells. J Clin Endocrinol Metab. 2001;86(10):4789–97. https://doi.org/10.1210/jcem.86.10.7912.

    Article  CAS  PubMed  Google Scholar 

  22. Niles LP, Wang J, Shen L, Lobb DK, Younglai EV. Melatonin receptor mRNA expression in human granulosa cells. Mol Cell Endocrinol. 1999;156(1–2):107–10. https://doi.org/10.1016/s0303-7207(99)00135-5.

    Article  CAS  PubMed  Google Scholar 

  23. Soares JM, Masana MI, Erşahin C, Dubocovich ML. Functional melatonin receptors in rat ovaries at vários stages of the estrous cycle. J Pharmacol Exp Ther. 2003;306(2):694–702.

    Article  CAS  Google Scholar 

  24. Brzezinski A, Seibel MM, Lynch HJ, Deng MH, Wurtman RJ. Melatonin in human preovulatory follicular fluid. J Clin Endocrinol Metab. 1987;64(4):865–7. https://doi.org/10.1210/jcem-64-4-865.

    Article  CAS  PubMed  Google Scholar 

  25. Ronnberg L, Kauppila A, Leppaluoto J, Martikainen H, Vakkuri O. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J Clin Endocrinol Metab. 1990;71(2):492–6. https://doi.org/10.1210/jcem-71-2-493.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Li W, Sun X, Li J, Wu W, Liu H. Vitamin C protects against defects induced by juglone during porcine oocyte maturation. J Cell Physiol. 2019;234(11):19574–81. https://doi.org/10.1002/jcp.28555.

    Article  CAS  PubMed  Google Scholar 

  27. Holt JE, Jones KT. Control of homologous chromosome division in the mammalian oocyte. Mol Hum Reprod. 2009;15(3):139–47. https://doi.org/10.1093/molehr/gap007.

    Article  CAS  PubMed  Google Scholar 

  28. Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase. Mol Endocrinol. 2007;21(9):2037–55. https://doi.org/10.1210/me.2006-0408.

    Article  CAS  PubMed  Google Scholar 

  29. Chaube SK, Prasad PV, Thakur SC, Shrivastav TG. Hydrogen peroxide modulates meiotic cell cycle and induces morphological features characteristic of apoptosis in rat oocytes cultured in vitro. Apoptosis. 2005;10(4):863–74. https://doi.org/10.1007/s10495-005-0367-8.

    Article  CAS  PubMed  Google Scholar 

  30. Tripathi A, Khatun S, Pandey AN, Mishra SK, Chaube R, Shrivastav TG, et al. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic Res. 2009;43(3):287–94. https://doi.org/10.1080/10715760802695985.

    Article  CAS  PubMed  Google Scholar 

  31. Tiwari M, Prasad S, Tripathi A, Pandey AN, Ali I, Singh AK, et al. Apoptosis in mammalian oocytes: a review. Apoptosis. 2015;20(8):1019–25. https://doi.org/10.1007/s10495-015-1136-y.

    Article  CAS  PubMed  Google Scholar 

  32. Agarwal A, Allamaneni SS. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod BioMed Online. 2004;9(3):338–47. https://doi.org/10.1016/s1472-6483(10)62151-7.

    Article  CAS  PubMed  Google Scholar 

  33. An Q, Peng W, Cheng Y, Lu Z, Zhou C, Zhang Y, et al. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J Cell Physiol. 2019;234(10):17370–81. https://doi.org/10.1002/jcp.28357.

    Article  CAS  PubMed  Google Scholar 

  34. Tian X, Wang F, He C, Zhang L, Tan D, Reiter RJ, et al. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J Pineal Res. 2014;57(3):239–47. https://doi.org/10.1111/jpi.12163.

    Article  CAS  PubMed  Google Scholar 

  35. Shi JM, Tian XZ, Zhou GB, Wang L, Gao C, Zhu SE, et al. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res. 2009;47(4):318–23. https://doi.org/10.1111/j.1600-079X.2009.00717.x.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Wang T, Lan M, Zang XW, Li YL, Cui XS, et al. Melatonin protects oocytes from MEHP exposure-induced meiosis defects in porcine. Biol Reprod. 2018;98(3):286–98. https://doi.org/10.1093/biolre/iox185.

    Article  PubMed  Google Scholar 

  37. Mullen TJ, Davis-Roca AC, Wignall SM. Spindle assembly and chromosome dynamics during oocyte meiosis. Curr Opin Cell Biol. 2019;60:53–9. https://doi.org/10.1016/j.ceb.2019.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan SN, Shaeib F, Thakur M, Jeelani R, Awonuga AO, Goud PT, et al. Peroxynitrite deteriorates oocyte quality through disassembly of microtubule organizing centers. Free Radic Biol Med. 2016;91:275–80. https://doi.org/10.1016/j.freeradbiomed.2015.12.033.

    Article  CAS  PubMed  Google Scholar 

  39. Wang QC, Liu J, Wang ZB, Zhang Y, Duan X, Cui XS, et al. Dynamin 2 regulates actin-mediated spindle migration in mouse oocytes. Biol Cell. 2014;106(6):193–202. https://doi.org/10.1111/boc.201400007.

    Article  CAS  PubMed  Google Scholar 

  40. Sun QY, Schatten H. Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction. 2006;131(2):193–205. https://doi.org/10.1530/rep.1.00847.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (grant no. 31970413), National Key R&D Program of China (grant no. 2018YFC1200201), and start-up grant from Nanjing Agricultural University (grant no. 804090).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in designing the experiments. Yan Cao performed the experiments, analyzed the data, and drafted the manuscript. Rongyang Li and Weijian Li contributed to the sample collection. Honglin Liu contributed the reagents. Yafei Cai revised the manuscript.

Corresponding author

Correspondence to Yafei Cai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures with porcine ovaries were conducted in accordance with the guidelines of the Animal Research Institute Committee at Nanjing Agricultural University (SYXK-2017-0027).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Li, R., Li, W. et al. Melatonin Attenuates Peroxynitrite-Induced Meiosis Dysfunction in Porcine Oocytes. Reprod. Sci. 28, 1281–1289 (2021). https://doi.org/10.1007/s43032-020-00331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00331-2

Keywords

Navigation